Skip to content

Commit f9e8a73

Browse files
committed
Added GREENER publication
1 parent eff5f82 commit f9e8a73

File tree

3 files changed

+12
-8
lines changed

3 files changed

+12
-8
lines changed

_pages/publications.md

Lines changed: 9 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@ header:
1111
layout: splash
1212

1313
toc: true
14+
15+
last_modified_at: 07/07/2023
1416
---
1517

1618
<div class="notice--primary" markdown="1">
@@ -23,25 +25,26 @@ If using resources on this website, please cite:
2325

2426
### 2023
2527

26-
- L. Lannelongue and M. Inouye, [‘Carbon footprint estimation for computational research’](https://rdcu.be/c5KPJ), _Nat Rev Methods Primers_, vol. 3, no. 1, Art. no. 1, Feb. 2023, doi: 10.1038/s43586-023-00202-5.
28+
- ['GREENER principles for environmentally sustainable computational science'](https://rdcu.be/dfpLM), L. Lannelongue, H.-E. G. Aronson, A. Bateman, E. Birney, T. Caplan, M. Juckes, J. McEntyre, A. D. Morris, G. Reilly and M. Inouye, _Nat Comput Sci_, vol. 3, no. 6, pp. 514–521, Jun. 2023, doi: 10.1038/s43588-023-00461-y.
29+
- ['Carbon footprint estimation for computational research'](https://rdcu.be/c5KPJ), L. Lannelongue and M. Inouye, _Nat Rev Methods Primers_, vol. 3, no. 1, Art. no. 1, Feb. 2023, doi: 10.1038/s43586-023-00202-5.
2730
[\[pdf\]]({% link assets/publications/2023_Comment_NRPM.pdf %})
2831

2932

3033
### 2022
3134

32-
- L. Grealey, L. Lannelongue., W.-Y. Saw, J. Marten, G. Méric, S. Ruiz-Carmona and M. Inouye, [‘The Carbon Footprint of Bioinformatics’](https://academic.oup.com/mbe/article/39/3/msac034/6526403), _Molecular Biology and Evolution_, p. msac034, Feb. 2022, doi: 10.1093/molbev/msac034.
35+
- ['The Carbon Footprint of Bioinformatics'](https://academic.oup.com/mbe/article/39/3/msac034/6526403), L. Grealey, L. Lannelongue., W.-Y. Saw, J. Marten, G. Méric, S. Ruiz-Carmona and M. Inouye, _Molecular Biology and Evolution_, p. msac034, Feb. 2022, doi: 10.1093/molbev/msac034.
3336
[\[pdf\]]({% link assets/publications/2022_Carbon-Footprint-of-bioinformatics.pdf %})
34-
- L. Lannelongue, [‘Carbon footprint: the (not so) hidden cost of high performance computing’](https://www.bcs.org/articles-opinion-and-research/carbon-footprint-the-not-so-hidden-cost-of-high-performance-computing/), _ITNOW_, vol. 63, no. 4, pp. 12–13, Jan. 2022, doi: 10.1093/itnow/bwab100.
37+
- [‘Carbon footprint: the (not so) hidden cost of high performance computing’](https://www.bcs.org/articles-opinion-and-research/carbon-footprint-the-not-so-hidden-cost-of-high-performance-computing/), L. Lannelongue, _ITNOW_, vol. 63, no. 4, pp. 12–13, Jan. 2022, doi: 10.1093/itnow/bwab100.
3538
[\[pdf\]]({% link assets/publications/2022_hidden-cost-of-HPC_ITNOW.pdf %})
3639

3740

3841
### 2021
3942

40-
- L. Lannelongue, J. Grealey, and M. Inouye, ['Green Algorithms: Quantifying the Carbon Footprint of Computation'](https://doi.org/10.1002/advs.202100707), _Advanced Science_, vol. 8, no. 12, p. 2100707, July 2021, doi: 10.1002/advs.202100707.
43+
- ['Green Algorithms: Quantifying the Carbon Footprint of Computation'](https://doi.org/10.1002/advs.202100707), L. Lannelongue, J. Grealey, and M. Inouye, _Advanced Science_, vol. 8, no. 12, p. 2100707, July 2021, doi: 10.1002/advs.202100707.
4144
[\[pdf\]]({% link assets/publications/2021_Green Algorithms_AdvScience.pdf %})
42-
- L. Lannelongue, J. Grealey, A. Bateman, and M. Inouye, [‘Ten simple rules to make your computing more environmentally sustainable’](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009324), _PLoS Computational Biology_, vol. 17, no. 9, p. e1009324, Sept. 2021, doi: 10.1371/journal.pcbi.1009324.
45+
- [‘Ten simple rules to make your computing more environmentally sustainable’](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009324),L. Lannelongue, J. Grealey, A. Bateman, and M. Inouye, _PLoS Computational Biology_, vol. 17, no. 9, p. e1009324, Sept. 2021, doi: 10.1371/journal.pcbi.1009324.
4346
[\[pdf\]]({% link assets/publications/2021_10-simple-rules_PLOScompbio.pdf %})
4447

4548
### 2020
4649

47-
- M. Inouye, L. Lannelongue and J. Grealey, [Green Algorithms for Health Data Science](https://www.hdruk.org/news/green-algorithms-for-health-data-science/), _HDR UK Blog_, Mar. 2020.
50+
- [Green Algorithms for Health Data Science](https://www.hdruk.org/news/green-algorithms-for-health-data-science/), M. Inouye, L. Lannelongue and J. Grealey, _HDR UK Blog_, Mar. 2020.
462 KB
Loading

index.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
# Edit theme's home layout instead if you wanna make some changes
44
# See: https://jekyllrb.com/docs/themes/#overriding-theme-defaults
55

6-
last_modified_at: 22/11/2022
6+
last_modified_at: 07/07/2023
77

88

99
layout: splash
@@ -68,7 +68,8 @@ gallery_logos:
6868
<!-- __:hourglass: This website is a work in progress, and we will keep adding content in the coming weeks/months!__ Comments/suggestions can be made [here](https://github.com/GreenAlgorithms/GreenAlgorithms.github.io/issues).
6969
{: .notice--warning} -->
7070

71-
__:mega: New publication! _"Carbon footprint estimation for computational research".___ We have just released a Comment in _Nature Reviews Methods Primers_ that summarises the different ways you can estimate the environmental impacts of your algorithms. [\[link\]](https://www.nature.com/articles/s43586-023-00202-5) [\[pdf\]]({% link assets/publications/2023_Comment_NRPM.pdf %})
71+
__:mega: New publication! _"GREENER principles for environmentally sustainable computational science".___ We have just released a Perspective in _Nature Computational Science_ which sets out fundamental principles for environmentally sustainable computational science (acronym GREENER), as well as guidance for best practices moving forward. The work was a collaboration with major stakeholders such as HDR-UK, EMBL-EBI, Wellcome and UKRI. [\[link\]](https://rdcu.be/dfpLM)
72+
<!-- {% include figure image_path="assets/images/roadmap figures 8b.jpg" %} -->
7273
{: .notice--info}
7374

7475
The Green Algorithms project aims at promoting more environmentally sustainable computational science. It regroups calculators that researchers can use to estimate the carbon footprint of their projects, tips on how to be more environmentally friendly, training material, past talks etc.

0 commit comments

Comments
 (0)