|
| 1 | +# Copyright (c) 2019-2020, RTE (https://www.rte-france.com) |
| 2 | +# Addition by Xavier Weiss (@DEUCE1957) |
| 3 | +# This Source Code Form is subject to the terms of the Mozilla Public License, version 2.0. |
| 4 | +# If a copy of the Mozilla Public License, version 2.0 was not distributed with this file, |
| 5 | +# you can obtain one at http://mozilla.org/MPL/2.0/. |
| 6 | +# SPDX-License-Identifier: MPL-2.0 |
| 7 | +# This file is part of Grid2Op, Grid2Op a testbed platform to model sequential decision making in power systems. |
| 8 | +import json |
| 9 | +import os |
| 10 | +import warnings |
| 11 | +import copy |
| 12 | +import numpy as np |
| 13 | +import grid2op |
| 14 | +from grid2op.Exceptions import ( |
| 15 | + Grid2OpException, |
| 16 | + EnvError, |
| 17 | + IncorrectNumberOfElements, |
| 18 | + NonFiniteElement, |
| 19 | +) |
| 20 | +from grid2op.Action import ActionSpace |
| 21 | +from grid2op.Observation import ObservationSpace |
| 22 | + |
| 23 | +from pathlib import Path as p |
| 24 | + |
| 25 | +class CompactEpisodeData(): |
| 26 | + |
| 27 | + """ |
| 28 | + This module provides a compact way to serialize/deserialize one episode of a Reinforcement Learning (RL) run. |
| 29 | + This enables episodes to be replayed, so we can understand the behaviour of the agent. |
| 30 | + It is compatible with :class:`EpisodeData` through the "to_dict()" method. |
| 31 | +
|
| 32 | + If enabled when using the :class:`Runner`, the :class:`CompactEpisodeData` |
| 33 | + will save the information in a structured and compact way. |
| 34 | + For each unique environment it will store a folder with: |
| 35 | + - "dict_action_space.json" |
| 36 | + - "dict_attack_space.json" |
| 37 | + - "dict_env_modification.json" |
| 38 | + - "dict_observation_space.json" |
| 39 | + Then for each episode it stores a single compressed Numpy archive (.npz) file, identified by the chronics ID (e.g. "003"). |
| 40 | + Inside this archive we find: |
| 41 | + - "actions": actions taken by the :class:`grid2op.BaseAgent.BaseAgent`, each row of this numpy 2d-array is a vector representation of the action |
| 42 | + taken by the agent at a particular timestep. |
| 43 | + - "env_actions": represents the modification of the powergrid by the environment, these modification usually concern hazards, maintenance, as well as modification of the generators production |
| 44 | + setpoint or the loads consumption. |
| 45 | + - "attacks": actions taken by any opponent present in the RL environment, stored similary to "actions". |
| 46 | + - "observations": observations of the class :class:`grid2op.BaseObservation.BaseObservation made by the :class:`grid2op.Agent.BaseAgent` after taking an action, stored as a numpy 2d-array |
| 47 | + where each row corresponds to a vector representation of the observation at that timestep. Note this includes the initial timestep, hence this array is 1 row longer than (e.g.) the actionss. |
| 48 | + - "rewards": reward received by the :class:`grid2op.Agent.BaseAgent from the :class:`grid2op.Environment` at timestep 't', represented as 1d-array. |
| 49 | + - "other_rewards": any other rewards logged by the :class:`grid2op.Environment` (but not necessarily passed to the agent), represented as a 2d-array. |
| 50 | + - "disc_lines": gives which lines have been disconnected during the simulation at each time step. The same convention as for "rewards" has been adopted. This means that the powerlines are |
| 51 | + disconnected when the :class:`grid2op.Agent.BaseAgent` takes the :class:`grid2op.BaseAction` at timestep 't`. |
| 52 | + - "times": gives some information about the processor time spent (in seconds), mainly the time taken by |
| 53 | + :class:`grid2op.Agent.BaseAgent` (and especially its method :func:`grid2op.BaseAgent.act`) and amount of time |
| 54 | + spent in the :class:`grid2op.Environment.Environment` |
| 55 | + All of the above can be read back from disk. |
| 56 | +
|
| 57 | + Inputs |
| 58 | + ---------- |
| 59 | + environment: :class:`grid2op.Environment` |
| 60 | + The environment we are running, contains most of the metadata required to store the episode. |
| 61 | + obs: :class:`grid2op.Observation` |
| 62 | + The initial observation of the environment in the current episode. Used to store the first observation. |
| 63 | + |
| 64 | + Examples |
| 65 | + -------- |
| 66 | + Here is an example on how to use the :class:`CompactEpisodeData` class outside of the :class:`grid2op.Runner.Runner`. |
| 67 | +
|
| 68 | + .. code-block:: python |
| 69 | + from pathlib import Path as p |
| 70 | + from grid2op.Agent import DoNothingAgent |
| 71 | + env = grid2op.make(""rte_case14_realistic") |
| 72 | + obs = env.reset() |
| 73 | + ep_id = env.chronics_handler.get_name() |
| 74 | + data_dir = p.cwd() # CHANGE THIS TO DESIRED LOCATION ON DISK |
| 75 | + agent = DoNothingAgent(env.action_space) |
| 76 | + reward = 0.0 |
| 77 | + episode_store = CompactEpisodeData(env, obs) |
| 78 | + for t in range(env.max_episode_duration()): |
| 79 | + start = time.perf_counter() |
| 80 | + act = agent.act(obs, reward) |
| 81 | + obs, reward, done, info = env.step(act) |
| 82 | + duration = time.perf_counter() - start |
| 83 | + episode_store.update(t, env, act, obs, reward, duration, info) |
| 84 | + # Store Episode Data to file (compactly) |
| 85 | + episode_store.to_disk() |
| 86 | + # Load Episode Data from disk by referring to the specific episode ID |
| 87 | + episode_store.from_disk(ep_id) |
| 88 | + """ |
| 89 | + |
| 90 | + def __init__(self, env, obs, exp_dir, ep_id:str=None): |
| 91 | + """ |
| 92 | + Creates Dictionary of Numpy Arrays for storing the details of a Grid2Op Episode (actions, observations, etc.). |
| 93 | + Pre-allocating the arrays like this is more efficient than appending to a mutable datatype (like a list). |
| 94 | + For the initial timestep, an extra observation is stored (the initial state of the Environment). |
| 95 | +
|
| 96 | + Args: |
| 97 | + env (grid2op.Environment): Current Grid2Op Environment, used to grab static attributes. |
| 98 | + obs (grid2op.Observation): Initial Observation (before agent is active) |
| 99 | + exp_dir (pathlib.Path): Where experiment data is stored |
| 100 | + ep_id (str | None): If provided tries to load previously stored episode from disk. |
| 101 | + |
| 102 | + Returns: |
| 103 | + dict<str:obj>: Contains all data to fully represent what happens in an episode |
| 104 | + """ |
| 105 | + if exp_dir is not None: |
| 106 | + self.exp_dir = p(exp_dir) |
| 107 | + else: |
| 108 | + self.exp_dir = None |
| 109 | + self.array_names = ("actions", "env_actions", "attacks", "observations", "rewards", "other_rewards", "disc_lines", "times") |
| 110 | + self.space_names = ("observation_space", "action_space", "attack_space", "env_modification_space") |
| 111 | + if ep_id is None: |
| 112 | + self.ep_id = env.chronics_handler.get_name() |
| 113 | + max_no_of_timesteps = int(env.max_episode_duration()) |
| 114 | + |
| 115 | + # Numpy Arrays |
| 116 | + self.actions = np.full((max_no_of_timesteps, env.action_space.n), fill_value=np.NaN, dtype=np.float16) |
| 117 | + self.env_actions = np.full((max_no_of_timesteps, env._helper_action_env.n), fill_value=np.NaN, dtype=np.float32) |
| 118 | + self.attacks = np.full((max_no_of_timesteps, env._opponent_action_space.n), fill_value=0.0, dtype=np.float32) |
| 119 | + self.observations = np.full((max_no_of_timesteps + 1, len(obs.to_vect())),fill_value=np.NaN,dtype=np.float32) |
| 120 | + self.rewards = np.full(max_no_of_timesteps, fill_value=np.NaN, dtype=np.float32) |
| 121 | + self.other_reward_names = list(sorted(env.other_rewards.keys())) |
| 122 | + self.other_rewards = np.full((max_no_of_timesteps, len(self.other_reward_names)), fill_value=np.NaN, dtype=np.float32) |
| 123 | + self.disc_lines = np.full((max_no_of_timesteps, env.backend.n_line), fill_value=np.NaN, dtype=np.bool_) |
| 124 | + self.times = np.full(max_no_of_timesteps, fill_value=np.NaN, dtype=np.float32) |
| 125 | + |
| 126 | + self.disc_lines_templ = np.full((1, env.backend.n_line), fill_value=False, dtype=np.bool_) |
| 127 | + # AttackTempl: Not used, kept for comptabiility with EpisodeData |
| 128 | + self.attack_templ = np.full((1, env._oppSpace.action_space.size()), fill_value=0.0, dtype=np.float32) |
| 129 | + |
| 130 | + self.legal = np.full(max_no_of_timesteps, fill_value=True, dtype=np.bool_) |
| 131 | + self.ambiguous = np.full(max_no_of_timesteps, fill_value=False, dtype=np.bool_) |
| 132 | + self.n_cols = env.action_space.n + env._helper_action_env.n + len(obs.to_vect()) + env.backend.n_line + env._oppSpace.action_space.size() + 6 |
| 133 | + |
| 134 | + # Store First Observation |
| 135 | + self.observations[0] = obs.to_vect() |
| 136 | + self.game_over_timestep = max_no_of_timesteps |
| 137 | + |
| 138 | + # JSON-serializable Objects |
| 139 | + self.observation_space=env.observation_space |
| 140 | + self.action_space=env.action_space |
| 141 | + self.attack_space=env._opponent_action_space |
| 142 | + self.env_modification_space=env._helper_action_env |
| 143 | + |
| 144 | + # Special JSON-Serializable Object: Episode MetaData |
| 145 | + self.meta = dict( |
| 146 | + chronics_path = self.ep_id, |
| 147 | + chronics_max_timestep = max_no_of_timesteps, |
| 148 | + game_over_timestep = self.game_over_timestep, |
| 149 | + other_reward_names = self.other_reward_names, |
| 150 | + grid_path = env._init_grid_path, |
| 151 | + backend_type = type(env.backend).__name__, |
| 152 | + env_type = type(env).__name__, |
| 153 | + env_seed = (env.seed_used.item() if env.seed_used.ndim == 0 else list(env.seed_used)) if isinstance(env.seed_used, np.ndarray) else env.seed_used, |
| 154 | + agent_seed = self.action_space.seed_used, |
| 155 | + nb_timestep_played = 0, |
| 156 | + cumulative_reward = 0.0, |
| 157 | + ) |
| 158 | + elif exp_dir is not None: |
| 159 | + self.load_metadata(ep_id) |
| 160 | + self.load_spaces() |
| 161 | + self.load_arrays(ep_id) |
| 162 | + |
| 163 | + def update(self, t:int, env, action, |
| 164 | + obs, reward:float, done:bool, duration:float, info): |
| 165 | + """ |
| 166 | + Update the arrays in the Episode Store for each step of the environment. |
| 167 | + Args: |
| 168 | + t (int): Current time step |
| 169 | + env (grid2op.Environment): State of Environment |
| 170 | + action (grid2op.Action): Action agent took on the Environment |
| 171 | + obs (grid2op.Observation): Observed result of action on Environment |
| 172 | + reward (float): Numeric reward returned by Environment for the given action |
| 173 | + duration (float): Time in seconds needed to choose and execute the action |
| 174 | + info (dict<str:np.array>): Dictionary containing information on legality and ambiguity of action |
| 175 | + """ |
| 176 | + self.actions[t - 1] = action.to_vect() |
| 177 | + self.env_actions[t - 1] = env._env_modification.to_vect() |
| 178 | + self.observations[t] = obs.to_vect() |
| 179 | + opp_attack = env._oppSpace.last_attack |
| 180 | + if opp_attack is not None: |
| 181 | + self.attacks[t - 1] = opp_attack.to_vect() |
| 182 | + self.rewards[t - 1] = reward |
| 183 | + if "disc_lines" in info: |
| 184 | + arr = info["disc_lines"] |
| 185 | + if arr is not None: |
| 186 | + self.disc_lines[t - 1] = arr |
| 187 | + else: |
| 188 | + self.disc_lines[t - 1] = self.disc_lines_templ |
| 189 | + if "rewards" in info: |
| 190 | + for i, other_reward_name in enumerate(self.other_reward_names): |
| 191 | + self.other_rewards[t-1, i] = info["rewards"][other_reward_name] |
| 192 | + self.times[t - 1] = duration |
| 193 | + self.legal[t - 1] = not info["is_illegal"] |
| 194 | + self.ambiguous[t - 1] = info["is_ambiguous"] |
| 195 | + if done: |
| 196 | + self.game_over_timestep = t |
| 197 | + # Update metadata |
| 198 | + self.meta.update( |
| 199 | + nb_timestep_played = t, |
| 200 | + cumulative_reward = self.meta["cumulative_reward"] + float(reward), |
| 201 | + ) |
| 202 | + return self.meta["cumulative_reward"] |
| 203 | + |
| 204 | + def asdict(self): |
| 205 | + """ |
| 206 | + Return the Episode Store as a dictionary. |
| 207 | + Compatible with Grid2Op's internal EpisodeData format as keyword arguments. |
| 208 | + """ |
| 209 | + # Other rewards in Grid2op's internal Episode Data is a list of dictionaries, so we convert to that format |
| 210 | + other_rewards = [{other_reward_name:float(self.other_rewards[t, i]) for i, other_reward_name in enumerate(self.other_reward_names)} for t in range(len(self.times))] |
| 211 | + return dict(actions=self.actions, env_actions=self.env_actions, |
| 212 | + observations=self.observations, |
| 213 | + rewards=self.rewards, |
| 214 | + other_rewards=other_rewards, |
| 215 | + disc_lines=self.disc_lines, times=self.times, |
| 216 | + disc_lines_templ=self.disc_lines_templ, attack_templ=self.attack_templ, |
| 217 | + attack=self.attacks, legal=self.legal, ambiguous=self.ambiguous, |
| 218 | + observation_space=self.observation_space, action_space=self.action_space, |
| 219 | + attack_space=self.attack_space, helper_action_env=self.env_modification_space) |
| 220 | + |
| 221 | + def store_metadata(self): |
| 222 | + """ |
| 223 | + Store this Episode's meta data to disk. |
| 224 | + """ |
| 225 | + print({k:(v,type(v)) for k,v in self.meta.items()}) |
| 226 | + with open(self.exp_dir / f"{self.ep_id}_metadata.json", "w", encoding="utf-8") as f: |
| 227 | + json.dump(self.meta, f, indent=4, sort_keys=True) |
| 228 | + |
| 229 | + def load_metadata(self, ep_id:str): |
| 230 | + """ |
| 231 | + Load metadata from a specific Episode. |
| 232 | + """ |
| 233 | + with open(self.exp_dir / f"{ep_id}_metadata.json", "r", encoding="utf-8") as f: |
| 234 | + self.meta = json.load(f) |
| 235 | + self.other_reward_names = self.meta["other_reward_names"] |
| 236 | + self.game_over_timestep = self.meta["game_over_timestep"] |
| 237 | + |
| 238 | + def store_spaces(self): |
| 239 | + """ |
| 240 | + Store the Observation, Action, Environment and Opponent spaces to disk. |
| 241 | + """ |
| 242 | + for space_name in self.space_names: |
| 243 | + with open(self.exp_dir / f"dict_{space_name}.json", "w", encoding="utf-8") as f: |
| 244 | + json.dump(getattr(self, space_name).cls_to_dict(), f, indent=4, sort_keys=True) |
| 245 | + |
| 246 | + def load_spaces(self): |
| 247 | + """ |
| 248 | + Load the Observation, Action, Environment and Opponent spaces from disk |
| 249 | + """ |
| 250 | + for space_name in self.space_names: |
| 251 | + with open(self.exp_dir / f"dict_{space_name}.json", "r", encoding="utf-8") as f: |
| 252 | + if space_name == "observation_space": |
| 253 | + setattr(self, space_name, ObservationSpace.from_dict(json.load(f))) |
| 254 | + else: |
| 255 | + setattr(self, space_name, ActionSpace.from_dict(json.load(f))) |
| 256 | + |
| 257 | + def store_arrays(self): |
| 258 | + """ |
| 259 | + Store compressed versions of the Actions, Observations, Rewards, Attacks and other metadata |
| 260 | + to disk as a compressed numpy archive (single file per episode). |
| 261 | + """ |
| 262 | + np.savez_compressed(self.exp_dir / f"{self.ep_id}.npz", **{array_name: getattr(self, array_name) for array_name in self.array_names}) |
| 263 | + |
| 264 | + def load_arrays(self, ep_id:str): |
| 265 | + """ |
| 266 | + Load Actions, Observations, Rewards, Attacks and other metadata from disk |
| 267 | + for a specific Episode ID (identified by Chronics name) |
| 268 | + """ |
| 269 | + arrays = np.load(self.exp_dir / f"{ep_id}.npz") |
| 270 | + for array_name in self.array_names: |
| 271 | + setattr(self, array_name, arrays[array_name]) |
| 272 | + self.ep_id = ep_id |
| 273 | + |
| 274 | + def to_disk(self): |
| 275 | + """ |
| 276 | + Store this EpisodeStore object instance to disk (as .json and .npz files) |
| 277 | + """ |
| 278 | + if self.exp_dir is not None: |
| 279 | + # Store Episode metadata |
| 280 | + self.store_metadata() |
| 281 | + # Store Spaces (values are static, so only save once per experiment) |
| 282 | + if len([f for f in self.exp_dir.glob("*.json")]) != 4: |
| 283 | + self.store_spaces() |
| 284 | + # Store Arrays as Compressed Numpy archive |
| 285 | + self.store_arrays() |
| 286 | + |
| 287 | + @classmethod |
| 288 | + def from_disk(cls, path, ep_id:str): |
| 289 | + """ |
| 290 | + Load EpisodeStore data from disk for a specific episode. |
| 291 | + """ |
| 292 | + return cls(env=None, obs=None, exp_dir=p(path), ep_id=ep_id) |
| 293 | + |
| 294 | + @staticmethod |
| 295 | + def list_episode(path): |
| 296 | + """ |
| 297 | + From a given path, extracts the episodes that can be loaded |
| 298 | +
|
| 299 | + Parameters |
| 300 | + ---------- |
| 301 | + path: ``str`` |
| 302 | + The path where to look for data coming from "episode" |
| 303 | +
|
| 304 | + Returns |
| 305 | + ------- |
| 306 | + res: ``list`` |
| 307 | + A list of possible episodes. Each element of this list is a tuple: (full_path, episode_name) |
| 308 | + """ |
| 309 | + return [(str(full_path), full_path.stem) for full_path in path.glob("*.npz")] |
| 310 | + |
| 311 | + def __len__(self): |
| 312 | + return self.game_over_timestep |
0 commit comments