@@ -4,34 +4,35 @@ This project implements a deep learning model for image classification on the Ca
44## Project Structure
55``` bash
66Caltech_classification_fine_tuning_AlexNet/
7- ├── src/ # Core code for serving (reused from training src/)
8- │ ├── inference.py # Model loading and prediction logic
9- │ ├── preprocess.py # Lightweight data preprocessing for inputs
10- │ ├── utils.py # Helpers (e.g., logging, validation)
11- │ └── config.py # Runtime configs (e.g., model path, thresholds)
12- ├── models/ # Deployed model artifacts (from training, versioned)
13- │ └── model_v1.pkl # Pickled model or ONNX/TensorFlow SavedModel
14- ├── data/ # Minimal—only schemas or sample inputs (no raw data)
15- │ └── schemas/ # Input/output data validation schemas (e.g., Pydantic)
16- ├── and tests/ # Integration tests for serving
17- │ └── test_inference.py # Tests for API endpoints
18- ├── api/ # Serving layer (e.g., REST API)
19- │ └── app.py # FastAPI/Flask app for predictions
20- ├── deployment/ # Deployment
21- │ ├── Dockerfile # Containerize the app
22- │ ├── docker-compose.yml # Local, testing with Docker
23- │ ├── k8s/ # Kubernetes manifests (e.g., deployment.yaml)
24- │ └── helm/ # Helm charts for cloud deployment
25- ├── monitoring/ # Production monitoring
26- │ ├── metrics.py # Logging metrics (e.g., latency, accuracy drift)
27- │ └── alerts.py # Alerts for model
28- ├── .github/workflows/ # CI/CD for deployment
29- │ └── deploy.yml # Auto-deploy on merge
30- ├── requirements.txt # Dependencies (minimal, production-optimized)
31- ├── README.md , # Deployment instructions
32- └── .env.example # Environment vars (e.g., MODEL_PATH)
7+ ├── src/
8+ │ ├── inference.py
9+ │ ├── preprocess.py
10+ │ ├── utils.py
11+ │ └── config.py
12+ ├── models/
13+ │ └── model_v1.pkl
14+ ├── data/
15+ │ └── schemas/
16+ ├── and tests/
17+ │ └── test_inference.py
18+ ├── api/
19+ │ └── app.py
20+ ├── deployment/
21+ │ ├── Dockerfile
22+ │ ├── docker-compose.yml
23+ │ ├── k8s/
24+ │ └── helm/
25+ ├── monitoring/
26+ │ ├── metrics.py
27+ │ └── alerts.py
28+ ├── .github/workflows/
29+ │ └── deploy.yml
30+ ├── requirements.txt
31+ ├── README.md ,
32+ └── .env.example
3333
3434```
35+
3536## Installation
3637To run this project, you need to install the Weights & Biases library (wandb). You can install it via pip:<br />
3738``` bash
@@ -72,3 +73,33 @@ This command will train the model for 10 epochs with a batch size of 32, learnin
7273- Weights & Biases (wandb) is used for experiment tracking and visualization.
7374
7475
76+
77+
78+
79+ <!-- Caltech_classification_fine_tuning_AlexNet/
80+ ├── src/ # Core code for serving (reused from training src/)
81+ │ ├── inference.py # Model loading and prediction logic
82+ │ ├── preprocess.py # Lightweight data preprocessing for inputs
83+ │ ├── utils.py # Helpers (e.g., logging, validation)
84+ │ └── config.py # Runtime configs (e.g., model path, thresholds)
85+ ├── models/ # Deployed model artifacts (from training, versioned)
86+ │ └── model_v1.pkl # Pickled model or ONNX/TensorFlow SavedModel
87+ ├── data/ # Minimal—only schemas or sample inputs (no raw data)
88+ │ └── schemas/ # Input/output data validation schemas (e.g., Pydantic)
89+ ├── and tests/ # Integration tests for serving
90+ │ └── test_inference.py # Tests for API endpoints
91+ ├── api/ # Serving layer (e.g., REST API)
92+ │ └── app.py # FastAPI/Flask app for predictions
93+ ├── deployment/ # Deployment
94+ │ ├── Dockerfile # Containerize the app
95+ │ ├── docker-compose.yml # Local, testing with Docker
96+ │ ├── k8s/ # Kubernetes manifests (e.g., deployment.yaml)
97+ │ └── helm/ # Helm charts for cloud deployment
98+ ├── monitoring/ # Production monitoring
99+ │ ├── metrics.py # Logging metrics (e.g., latency, accuracy drift)
100+ │ └── alerts.py # Alerts for model
101+ ├── .github/workflows/ # CI/CD for deployment
102+ │ └── deploy.yml # Auto-deploy on merge
103+ ├── requirements.txt # Dependencies (minimal, production-optimized)
104+ ├── README.md , # Deployment instructions
105+ └── .env.example # Environment vars (e.g., MODEL_PATH) -->
0 commit comments