|
| 1 | +"""sPPO-token policy loss function. |
| 2 | +Relevant paper: https://arxiv.org/abs/2108.05828. |
| 3 | +""" |
| 4 | + |
| 5 | +from typing import Dict, Tuple |
| 6 | + |
| 7 | +import torch |
| 8 | + |
| 9 | +from trinity.algorithm.policy_loss_fn.policy_loss_fn import POLICY_LOSS_FN, PolicyLossFn |
| 10 | +from trinity.algorithm.utils import masked_mean |
| 11 | + |
| 12 | + |
| 13 | +@POLICY_LOSS_FN.register_module("sppo") |
| 14 | +class sPPOPolicyLossFn(PolicyLossFn): |
| 15 | + def __init__( |
| 16 | + self, |
| 17 | + backend: str = "verl", |
| 18 | + epsilon: float = 0.3, |
| 19 | + ) -> None: |
| 20 | + super().__init__(backend=backend) |
| 21 | + self.epsilon = epsilon |
| 22 | + |
| 23 | + def __call__( # type: ignore |
| 24 | + self, |
| 25 | + logprob: torch.Tensor, # [batch_size, seq_len] |
| 26 | + old_logprob: torch.Tensor, # [batch_size, seq_len] |
| 27 | + action_mask: torch.Tensor, # [batch_size, seq_len] |
| 28 | + advantages: torch.Tensor, # [batch_size, seq_len] |
| 29 | + **kwargs, |
| 30 | + ) -> Tuple[torch.Tensor, Dict]: |
| 31 | + """Calculate sPPO loss. |
| 32 | + The formula is as follows: |
| 33 | + advantages*log(clip(ratio, 1/(1+epsilon), 1+epsilon)) |
| 34 | + ratio = exp(logprob - old_logprob) |
| 35 | + """ |
| 36 | + # |
| 37 | + # token-wise |
| 38 | + ratio = torch.exp(logprob - old_logprob).detach() |
| 39 | + is_in_range = (ratio >= (1 / (1 + self.epsilon))) * (ratio <= (1 + self.epsilon)) |
| 40 | + is_clipped_mask = ~is_in_range |
| 41 | + pg_losses = -advantages * (logprob - old_logprob) * is_in_range.float() |
| 42 | + pg_loss = masked_mean(pg_losses, action_mask) |
| 43 | + pg_clipfrac = masked_mean(is_clipped_mask.float(), action_mask) |
| 44 | + metrics = { |
| 45 | + "pg_clipfrac": pg_clipfrac.item(), |
| 46 | + "pg_loss": pg_loss.detach().item(), |
| 47 | + } |
| 48 | + return pg_loss, metrics |
| 49 | + |
| 50 | + @classmethod |
| 51 | + def default_args(cls) -> Dict: |
| 52 | + return { |
| 53 | + "epsilon": 0.3, |
| 54 | + } |
0 commit comments