Skip to content

🀝 Dashboard: Coalition & Voting Pattern Analysis #52

@pethers

Description

@pethers

πŸ“‹ Issue Type

Feature - Data Visualization Dashboard

🎯 Objective

Implement comprehensive coalition and voting pattern dashboard revealing party alignment dynamics, voting anomalies, behavioral trends, and decision patterns using CIA platform data with advanced D3.js network visualizations.

πŸ“Š Current State

  • No coalition visualization exists
  • CIA voting data available but not consumed (50+ years of voting records)
  • No anomaly detection visualizations
  • No behavioral pattern analysis displays

πŸš€ Desired State

Interactive dashboard featuring:

  • Coalition Network Diagram: D3.js force-directed graph showing party alliances
  • Voting Anomaly Detection: Highlight unusual voting patterns
  • Behavioral Patterns: Party voting consistency analysis
  • Decision Trends: Temporal decision-making patterns
  • Party Alignment Matrix: Cross-party voting agreement heat map

πŸ“Š CIA Data Integration Context

CIA Product(s):

  • Coalition Analysis Dashboard
  • Voting Pattern Analysis
  • Top 10 Rankings (Party Rebels, Coalition Brokers)

Data Sources:

Primary CSV Files:
Coalition & Alignment:
- distribution_coalition_alignment.csv (party alignment scores)
- distribution_behavioral_patterns_by_party.csv (behavioral analysis)
- distribution_decision_patterns_by_party.csv (decision patterns)

Voting Analysis:
- distribution_voting_anomaly_classification.csv (anomaly types)
- distribution_anomaly_by_party.csv (anomalies by party)
- distribution_annual_party_votes.csv (voting volume by year)

Temporal Trends:
- distribution_decision_trends.csv (decision trends over time)
- percentile_party_effectiveness_trends.csv (effectiveness)

Percentile Distributions:
- percentile_voting_anomaly_detection.csv (P1-P99 anomaly scores)
- percentile_politician_behavioral_trends.csv (behavioral percentiles)
- percentile_politician_decision_pattern.csv (decision percentiles)

Annual Time Series:
- distribution_annual_party_votes.csv (1971-2026)
- distribution_annual_ballots.csv (ballot volume)

Sample Size: 300-500 rows (voting data)
Coverage: 50+ years (1971-2026)

Sample Data: Reference https://github.com/Hack23/cia/tree/master/service.data.impl/sample-data/

Methodology:

  • Coalition detection via correlation analysis (DATA_ANALYSIS_INTOP_OSINT.md)
  • Anomaly detection using statistical thresholds
  • Behavioral pattern clustering
  • Network analysis for alliance visualization

Implementation Notes:

  • Fetch CSV files via GitHub raw content API
  • Calculate real-time coalition scores
  • Detect anomalies using P90/P99 thresholds
  • Cache locally in /data/cia/voting/
  • Update frequency: Weekly (voting data changes weekly)

πŸ”§ Implementation Approach

1. Data Integration

async function loadVotingData() {
  const datasets = {
    coalition: 'distribution_coalition_alignment.csv',
    anomalies: 'distribution_voting_anomaly_classification.csv',
    behavioral: 'distribution_behavioral_patterns_by_party.csv',
    decisions: 'distribution_decision_patterns_by_party.csv',
    annual: 'distribution_annual_party_votes.csv'
  };
  
  const data = await fetchMultipleCIADatasets(datasets);
  return {
    network: buildCoalitionNetwork(data.coalition),
    anomalies: detectAnomalies(data.anomalies),
    patterns: analyzeBehavior(data.behavioral)
  };
}

2. D3.js Network Visualization

// Coalition network force-directed graph
function renderCoalitionNetwork(data) {
  const svg = d3.select('#coalitionNetwork')
    .append('svg')
    .attr('width', width)
    .attr('height', height);
  
  // Nodes = Political parties (8 parties)
  // Links = Coalition strength (weighted edges)
  // Color = Party color
  // Size = Influence score
  
  const simulation = d3.forceSimulation(nodes)
    .force('link', d3.forceLink(links).distance(d => 200 - d.strength * 100))
    .force('charge', d3.forceManyBody().strength(-300))
    .force('center', d3.forceCenter(width / 2, height / 2));
}

3. HTML Structure

<section id="coalition-dashboard" class="dashboard-container">
  <h2>🀝 Coalition & Voting Pattern Analysis</h2>
  
  <div class="dashboard-grid">
    <div class="chart-card wide">
      <h3>Coalition Network (Interactive)</h3>
      <div id="coalitionNetwork" role="img" aria-label="Coalition network diagram"></div>
      <table class="sr-only" id="coalitionNetworkTable">
        <!-- Accessible table fallback -->
      </table>
    </div>
    
    <div class="chart-card">
      <h3>Voting Anomalies (Last 5 Years)</h3>
      <canvas id="votingAnomalyChart"></canvas>
    </div>
    
    <div class="chart-card">
      <h3>Party Alignment Heat Map</h3>
      <div id="alignmentHeatMap"></div>
    </div>
    
    <div class="chart-card">
      <h3>Behavioral Patterns</h3>
      <canvas id="behavioralPatternsChart"></canvas>
    </div>
    
    <div class="chart-card wide">
      <h3>Decision Trends (1990-2026)</h3>
      <canvas id="decisionTrendsChart"></canvas>
    </div>
  </div>
</section>

4. Anomaly Detection Logic

// Detect voting anomalies using percentile thresholds
function detectAnomalies(votingData, thresholds) {
  return votingData.filter(vote => {
    const score = calculateDeviationScore(vote);
    return score > thresholds.p90; // P90 = significant anomaly
  }).map(vote => ({
    ...vote,
    severity: score > thresholds.p99 ? 'critical' : 'high',
    type: classifyAnomaly(vote)
  }));
}

5. Accessibility

  • Network diagram keyboard navigation (Tab to nodes)
  • Alternative table with coalition data
  • ARIA labels for all interactive elements
  • High contrast mode for visually impaired
  • Screen reader announcements for updates

πŸ€– Recommended Agent

data-visualization-specialist - Expert in D3.js network diagrams, statistical analysis, and political coalition visualization

Rationale: Requires advanced D3.js force-directed graph expertise, statistical anomaly detection, and deep understanding of Swedish parliamentary coalition dynamics.

Custom Instructions:

- Use D3.js v7+ for coalition network diagram
- Implement force-directed graph with weighted edges
- Use Chart.js for time series and anomaly charts
- Add zoom and pan to network diagram
- Implement anomaly detection with P90/P99 thresholds
- Use Swedish party colors (S=red, M=blue, SD=yellow, etc.)
- Ensure WCAG 2.1 AA accessibility
- Support RTL for Arabic/Hebrew
- Cache voting data locally
- Add real-time coalition score calculations
- No JavaScript frameworks (vanilla JS + D3/Chart.js)

βœ… Acceptance Criteria

Data Integration

  • CIA voting CSV files fetched and parsed
  • Coalition scores calculated correctly
  • Anomaly detection implemented (P90/P99 thresholds)
  • Behavioral patterns analyzed
  • Local caching in /data/cia/voting/

Visualizations

  • D3.js coalition network (force-directed graph)
  • Party alignment heat map (D3.js)
  • Voting anomaly scatter plot (Chart.js)
  • Behavioral patterns bar chart (Chart.js)
  • Decision trends timeline (Chart.js)
  • Interactive zoom/pan on network diagram

Coalition Network Features

  • 8 party nodes with party colors
  • Weighted edges showing coalition strength
  • Node size proportional to influence
  • Click on node shows party details
  • Hover shows coalition strength tooltip
  • Drag nodes to rearrange

Anomaly Detection

  • Anomalies highlighted in red (critical) / orange (high)
  • Tooltip shows anomaly type and score
  • Filter by anomaly type (cross-party, rebel, absence)
  • Temporal anomaly trends displayed

Quality

  • HTML validation passes
  • WCAG 2.1 AA compliance
  • Responsive design (320px-1440px+)
  • Load time < 4 seconds (complex D3.js)
  • D3.js v7+ and Chart.js via CDN with SRI

Multi-Language

  • Party names localized (14 languages)
  • Anomaly type labels translated
  • Chart legends in current locale
  • Network diagram tooltips localized

Documentation

  • Coalition scoring methodology
  • Anomaly detection algorithm
  • Network diagram interaction guide
  • Update ARCHITECTURE.md with network component

πŸ“š References

🏷️ Labels

type:feature, priority:high, component:visualization, component:data-integration, agent:data-visualization-specialist, cia-data, dashboard, voting-analysis, coalition-analysis, network-diagram

🌐 Multi-Language Support

All 14 languages supported with localized party names and labels

πŸ” Security & Compliance

  • Public Data: Parliamentary voting records (public domain)
  • No PII: Aggregated party-level data only
  • HTTPS-only: Secure data transmission
  • SRI: D3.js and Chart.js with integrity hashes
  • ISMS: Follows data analysis documentation standards

Metadata

Metadata

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions