Skip to content

Commit 92e0b8a

Browse files
committed
Rename weighted encoding to EDGE encoding
1 parent f4d84f4 commit 92e0b8a

File tree

6 files changed

+28
-28
lines changed

6 files changed

+28
-28
lines changed

pandas_genomics/accessors/dataframe_accessor.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
import numpy as np
55
import pandas as pd
66

7-
from .utils import generate_weighted_encodings
7+
from .utils import calculate_edge_alphas
88
from pandas_genomics.arrays import GenotypeDtype
99

1010

@@ -145,10 +145,10 @@ def encode_codominant(self) -> pd.DataFrame:
145145
axis=1,
146146
)
147147

148-
def encode_weighted(self, encoding_info: pd.DataFrame) -> pd.DataFrame:
149-
"""Weighted (EDGE) encoding of genotypes.
148+
def encode_edge(self, encoding_info: pd.DataFrame) -> pd.DataFrame:
149+
"""EDGE (weighted) encoding of genotypes.
150150
151-
See :meth:`GenotypeArray.encode_weighted`
151+
See :meth:`GenotypeArray.encode_edge`
152152
153153
Parameters
154154
----------
@@ -221,7 +221,7 @@ def encode_weighted(self, encoding_info: pd.DataFrame) -> pd.DataFrame:
221221
continue
222222
else:
223223
try:
224-
results.append(s.genomics.encode_weighted(**info))
224+
results.append(s.genomics.encode_edge(**info))
225225
except Exception as e:
226226
warnings[s.array.variant.id] = str(e)
227227
# Print Warnings
@@ -232,14 +232,14 @@ def encode_weighted(self, encoding_info: pd.DataFrame) -> pd.DataFrame:
232232
# Concatenate results
233233
return pd.concat(results, axis=1)
234234

235-
def generate_weighted_encodings(
235+
def calculate_edge_encoding_values(
236236
self,
237237
data: pd.DataFrame,
238238
outcome_variable: str,
239239
covariates: Optional[List[str]] = None,
240240
):
241241
"""
242-
Calculate alpha values to be used in weighted encoding
242+
Calculate alpha values to be used in edge encoding
243243
244244
Parameters
245245
----------
@@ -261,15 +261,15 @@ def generate_weighted_encodings(
261261
262262
Notes
263263
-----
264-
See [1]_ for more information about weighted encoding.
264+
See [1]_ for more information about edge encoding.
265265
266266
References
267267
----------
268268
.. [1] Hall, Molly A., et al.
269269
"Novel EDGE encoding method enhances ability to identify genetic interactions."
270270
PLoS genetics 17.6 (2021): e1009534.
271271
"""
272-
return generate_weighted_encodings(
272+
return calculate_edge_alphas(
273273
genotypes=self._obj.select_dtypes([GenotypeDtype]),
274274
data=data,
275275
outcome_variable=outcome_variable,

pandas_genomics/accessors/series_accessor.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
import pandas as pd
44

5-
from .utils import generate_weighted_encodings
5+
from .utils import calculate_edge_alphas
66
from pandas_genomics.arrays import GenotypeDtype
77

88

@@ -156,30 +156,30 @@ def encode_codominant(self) -> pd.Series:
156156
data=self._array.encode_codominant(), index=self._index, name=self._name
157157
)
158158

159-
def encode_weighted(
159+
def encode_edge(
160160
self,
161161
alpha_value: float,
162162
ref_allele: str,
163163
alt_allele: str,
164164
minor_allele_freq: float,
165165
) -> pd.Series:
166-
"""Weighted (edge) encoding of genotypes.
166+
"""EDGE (weighted) encoding of genotypes.
167167
168-
See :meth:`GenotypeArray.encode_weighted`
168+
See :meth:`GenotypeArray.encode_edge`
169169
170170
Returns
171171
-------
172172
pd.Series
173173
"""
174174
return pd.Series(
175-
data=self._array.encode_weighted(
175+
data=self._array.encode_edge(
176176
alpha_value, ref_allele, alt_allele, minor_allele_freq
177177
),
178178
index=self._index,
179179
name=self._name,
180180
)
181181

182-
def generate_weighted_encodings(
182+
def calculate_edge_encoding_values(
183183
self,
184184
data: pd.DataFrame,
185185
outcome_variable: str,
@@ -216,7 +216,7 @@ def generate_weighted_encodings(
216216
"Novel EDGE encoding method enhances ability to identify genetic interactions."
217217
PLoS genetics 17.6 (2021): e1009534.
218218
"""
219-
return generate_weighted_encodings(
219+
return calculate_edge_alphas(
220220
genotypes=pd.Series(self._array, name=self._name, index=self._index),
221221
data=data,
222222
outcome_variable=outcome_variable,
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
from .weighted_encodings import generate_weighted_encodings
1+
from .edge_encoding import calculate_edge_alphas

pandas_genomics/accessors/utils/weighted_encodings.py renamed to pandas_genomics/accessors/utils/edge_encoding.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,14 +9,14 @@
99
from pandas_genomics.arrays import GenotypeDtype
1010

1111

12-
def generate_weighted_encodings(
12+
def calculate_edge_alphas(
1313
genotypes: Union[pd.Series, pd.DataFrame],
1414
data: pd.DataFrame,
1515
outcome_variable: str,
1616
covariates: Optional[List[str]] = None,
1717
):
1818
"""
19-
Calculate alpha values to be used in weighted encoding
19+
Calculate alpha values to be used in EDGE encoding
2020
2121
Parameters
2222
----------
@@ -40,7 +40,7 @@ def generate_weighted_encodings(
4040
4141
Notes
4242
-----
43-
See [1]_ for more information about weighted encoding.
43+
See [1]_ for more information about EDGE encoding.
4444
4545
References
4646
----------

pandas_genomics/arrays/encoding_mixin.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -86,14 +86,14 @@ def encode_codominant(self) -> pd.arrays.Categorical:
8686
result[(self.allele_idxs == MISSING_IDX).any(axis=1)] = None
8787
return result
8888

89-
def encode_weighted(
89+
def encode_edge(
9090
self,
9191
alpha_value: float,
9292
ref_allele: str,
9393
alt_allele: str,
9494
minor_allele_freq: float,
9595
) -> pd.DataFrame:
96-
"""Perform weighted (edge) encoding.
96+
"""Perform EDGE (weighted) encoding.
9797
9898
Parameters
9999
----------
@@ -116,7 +116,7 @@ def encode_weighted(
116116
117117
Notes
118118
-----
119-
See [1]_ for more information about weighted encoding.
119+
See [1]_ for more information about edge encoding.
120120
Encoding will be based on the provided ref and alt alleles, since the alpha value would be specific to them.
121121
In the future, if the existing minor allele frequency differs greatly from the provided value, a warning will be issued.
122122

tests/genotype_array/test_GenotypeArrayEncoding.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,7 @@ def test_encoding_codominant(data_for_encoding):
177177
def test_encoding_weighted(
178178
data_for_encoding, alpha_value, ref_allele, alt_allele, minor_allele_freq, expected
179179
):
180-
result = data_for_encoding().encode_weighted(
180+
result = data_for_encoding().encode_edge(
181181
alpha_value, ref_allele, alt_allele, minor_allele_freq
182182
)
183183
assert_array_equal(expected, result)
@@ -233,7 +233,7 @@ def test_encoding_weighted(
233233
def test_encoding_weighted_df(encoding_df, encoding_info, expected):
234234
df = encoding_df.copy()
235235
df["num"] = pd.Series(np.ones(len(df)))
236-
result = df.genomics.encode_weighted(encoding_info)
236+
result = df.genomics.encode_edge(encoding_info)
237237
assert_frame_equal(expected, result)
238238

239239

@@ -242,12 +242,12 @@ def test_generated_encodings_plink(genotypearray_df):
242242
{"phenotype": genotypearray_df.index.get_level_values("phenotype")},
243243
index=genotypearray_df.index,
244244
)
245-
result_df = genotypearray_df.genomics.generate_weighted_encodings(
245+
result_df = genotypearray_df.genomics.calculate_edge_encoding_values(
246246
data, outcome_variable="phenotype"
247247
)
248248
result_series = genotypearray_df[
249249
"18_nullA_18"
250-
].genomics.generate_weighted_encodings(data, outcome_variable="phenotype")
250+
].genomics.calculate_edge_encoding_values(data, outcome_variable="phenotype")
251251
expected = pd.DataFrame(
252252
{
253253
"Variant ID": ["nullA_18"],
@@ -320,7 +320,7 @@ def test_generated_encodings_bams(bam, expected_alphas):
320320
genotypes = bam.generate_case_control()
321321
data = genotypes["Outcome"]
322322
genotypes = genotypes.drop(columns="Outcome")
323-
result = genotypes.genomics.generate_weighted_encodings(
323+
result = genotypes.genomics.calculate_edge_encoding_values(
324324
data, outcome_variable="Outcome"
325325
)
326326
assert np.isclose(result["Alpha Value"], expected_alphas).all()

0 commit comments

Comments
 (0)