Skip to content

Commit b7d54b7

Browse files
Updates from Overleaf
1 parent 16b161a commit b7d54b7

File tree

1 file changed

+23
-28
lines changed

1 file changed

+23
-28
lines changed

main.tex

Lines changed: 23 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
\documentclass[11pt]{article}
2-
\usepackage[a4paper, total={7in, 10in}]{geometry}
2+
\usepackage[a4paper, total={7.4in, 10in}]{geometry}
33
\usepackage{hyperref}
44
\usepackage{enumitem}
55
\usepackage{titlesec}
@@ -44,32 +44,34 @@ \section*{Experience}
4444
PhD Project: Lattice QCD and Machine Learning Approaches to TMD Physics
4545
\vspace{-0.5em}
4646
\begin{itemize}
47-
\item Achieved 93\%+ model fit accuracy by building an end-to-end ML pipeline processing 30,000+ multidimensional observables from Monte Carlo simulations using symbolic regression (PySR) with physics-constrained loss functions.
47+
\item Generated 30,000+ high-fidelity synthetic data points by solving Partial Differential Equations with large-scale Monte Carlo simulations and built an end-to-end AI for Science pipeline to model the underlying physics, achieving over 98\% predictive accuracy with symbolic regression machine learning.
4848
\vspace{-0.5em}
4949
\item Reduced data processing time 10× by developing GPU-accelerated CUDA C++ (cuFFT) pipelines for multi-terabyte Fourier transforms on HPC clusters.
5050
\vspace{-0.5em}
51-
\item Ensured numerical stability and reproducibility across multi-stage fitting and extrapolation workflows by creating production-grade Python and Mathematica packages for jackknife resampling and uncertainty propagation.
51+
\item Developed production-grade Python \& Mathematica packages for reproducible statistical analysis, ensuring numerical stability in multi-stage workflows (jackknife resampling, uncertainty propagation)
5252
\end{itemize}
5353

5454

5555
\section*{Independent Collaborations}
5656
\hrule
5757
\vspace{-0.3em}
5858
\begin{enumerate}
59-
\item \textbf{Los Alamos National Laboratory} - Computational Physics Collaboration \hfill \textit{(May 2024 - Present)}
59+
\item \textbf{Los Alamos National Laboratory} - Computational Physics \hfill \textit{(May 2024 - Present)}
6060
\vspace{-0.5em}
6161
\begin{itemize}
62-
\item Accelerated multi-terabyte scientific calculations by developing and optimizing parallelized C++ CUDA kernels for GPU-accelerated HPC clusters (NERSC Perlmutter), achieving significant runtime reduction in large-scale Monte Carlo simulations.
62+
\item Accelerated multi-terabyte scientific calculations by developing and optimizing parallelized C++ CUDA kernels for GPU-accelerated HPC clusters (NERSC Perlmutter), significantly reducing runtime for large-scale Monte Carlo simulations.
6363
\vspace{-0.5em}
64-
\item Managed and executed 75,000+ CPU/GPU compute hours by designing and deploying custom SLURM workflows for large-scale job orchestration, enabling robust, automated parallel analysis.
65-
\vspace{-1.7em}
66-
\item Increased model reliability through rigorous validation methods, applying AIC-based selection, chi-squared minimization with full covariance matrices, and bootstrap/jackknife resampling across 50,000 correlated data points.
64+
\item Managed and executed 75,000+ CPU/GPU compute hours by designing and deploying custom SLURM workflows for large-scale job orchestration
65+
\vspace{-0.5em}
66+
\item Investigated advanced simulation techniques using gradient flow, a method conceptually similar to Flow-Based Generative Models, to analyze the properties of quantum systems and ensure numerical stability
67+
\vspace{-0.9em}
68+
\item Increased model reliability through rigorous statistical validation on over 50,000 correlated data points, applying methods like AIC-based selection and chi-squared minimization with full covariance matrices.
6769
\end{itemize}
6870

69-
\item \textbf{North Carolina State University} - Mathematical Physics Collaboration \hfill \textit{(Dec 2020 - Present)}
71+
\item \textbf{North Carolina State University} - Mathematical Physics \hfill \textit{(Dec 2020 - Present)}
7072
\vspace{-0.5em}
7173
\begin{itemize}
72-
\item Implemented and managed Mathematica symbolic computation workflows on HPC clusters (NERSC Perlmutter) to analyze complex algebraic structures and symmetry constraints.
74+
\item Implemented and managed Mathematica symbolic computation workflows on HPC clusters to analyze complex algebraic structures and symmetry constraints.
7375
\end{itemize}
7476

7577
\end{enumerate}
@@ -79,30 +81,23 @@ \section*{Technical Projects}
7981
\hrule
8082
\vspace{-0.3em}
8183
\begin{enumerate}
84+
\item \textbf{$\mathbb{Z}_2$ Lattice Gauge Monte Carlo Simulation}
85+
\hfill \href{https://github.com/Hariprashad-Ravikumar/Z2_LatticeGauge_Monte_Carlo_Simulation}{GitHub} \\
86+
\vspace{-2em}
87+
\begin{itemize}
88+
\item Developed a Physics-Based Simulation from scratch to generate synthetic lattice gauge configurations using Monte Carlo methods on HPC clusters, validating the generated data against known analytical benchmarks.
89+
\end{itemize}
8290
\item \textbf{AI-DataScience-Lab: Cloud-Hosted Forecasting App}
8391
\hfill \href{https://github.com/Hariprashad-Ravikumar/AI-DataScience-Lab}{GitHub} $|$ \href{https://hariprashad-ravikumar.github.io/AI-DataScience-Lab}{Live App} \\
8492
\vspace{-2em}
8593
\begin{itemize}
86-
\item Built a cloud-hosted ML forecasting platform with automated data ingestion, model training, and retrieval pipelines using AWS/Azure, Flask, and React.
87-
\vspace{-0.5em}
88-
\item Integrated GPT API to generate natural-language summaries, bridging structured data with NLP-driven insights.
94+
\item Developed a full-stack ML forecasting platform on AWS/Azure featuring automated MLOps pipelines and a GPT API for generating natural-language insights.
8995
\end{itemize}
90-
91-
9296
\item \textbf{Neural Network from Scratch with \texttt{NumPy}}
9397
\hfill \href{https://github.com/Hariprashad-Ravikumar/Neural-Network-from-Scratch-with-NumPy}{GitHub} \\
9498
\vspace{-2em}
9599
\begin{itemize}
96-
\item Implemented a two-layer neural network from the ground up in NumPy, building a deep understanding of backpropagation, activation functions (ReLU, softmax), and optimization.
97-
\vspace{-0.5em}
98-
\item Trained the model for the computer vision task of handwritten digit recognition on 5,000 MNIST samples, achieving $80\%$ accuracy within 60 epochs by tuning the learning rate.
99-
\end{itemize}
100-
101-
\item \textbf{$\mathbb{Z}_2$ Lattice Gauge Monte Carlo Simulation}
102-
\hfill \href{https://github.com/Hariprashad-Ravikumar/Z2_LatticeGauge_Monte_Carlo_Simulation}{GitHub} \\
103-
\vspace{-2em}
104-
\begin{itemize}
105-
\item Implemented large-scale Monte Carlo simulations on HPC clusters, validating results against analytical benchmarks and optimizing data processing throughput for large datasets.
100+
\item Implemented and trained a neural network from scratch in NumPy for MNIST digit recognition, achieving 80\% accuracy by building and tuning core components like backpropagation and activation functions
106101
\end{itemize}
107102
\end{enumerate}
108103

@@ -112,10 +107,10 @@ \section*{Technical Skills}
112107
\vspace{-0.3em}
113108
\begin{tabbing}
114109
\hspace{3.5cm} \= \kill
115-
\textbf{Programming} \> Python, C++, CUDA, Bash, SQL, JavaScript, Lua, HTML/CSS, YAML \\
110+
\textbf{Programming} \> Python, C++, CUDA, Bash, SQL, Lua, HTML/CSS, YAML \\
116111
\textbf{ML \& APIs} \> Numba, TensorFlow, PyTorch, Scikit-learn, Pandas, cuFFT, cuDNN, Flask, FastAPI, RAG\\
117112
\textbf{Cloud \& MLOps} \> Azure, AWS (Lambda, S3), CI/CD, Docker, Git, SLURM\\
118-
\textbf{Methods \& HPC} \> MPI, GPU acceleration, Parallel Computing, Regression, Monte Carlo methods
113+
\textbf{Methods \& HPC} \> Parallel Computing (GPU, MPI), Numerical Methods (PDEs, Monte Carlo, Regression)
119114
\end{tabbing}
120115

121116
\section*{Education}
@@ -134,9 +129,9 @@ \section*{Certifications}
134129
\hrule
135130
\vspace{-0.3em}
136131
\begin{itemize}
132+
\item Getting Started with Accelerated Computing in CUDA C/C++ by NVIDIA
137133
\item \href{https://learn.nvidia.com/certificates?id=mMWLgny_SEC5DgHXY9XYEw}{Fundamentals of Accelerated Computing with CUDA Python by NVIDIA}
138134
\item \href{https://www.coursera.org/account/accomplishments/verify/XG3YT41S0PF5}{Advanced Learning Algorithms by DeepLearning.AI}
139-
\item Getting Started with Accelerated Computing in CUDA C/C++ by NVIDIA
140135
\item \href{https://coursera.org/share/b9cffe9c5ba5832ffb99bf7abdd8c384}{Supervised Machine Learning: Regression and Classification by DeepLearning.AI}
141136
\item \href{https://www.coursera.org/account/accomplishments/professional-cert/certificate/U0HU8UKT89L4}{Google Advanced Data Analytics Professional Certificate}
142137
\end{itemize}

0 commit comments

Comments
 (0)