|
| 1 | +// The class for tensor, n-dimensional array |
| 2 | + |
| 3 | +export class Tensor { |
| 4 | + // val is an n-d array |
| 5 | + val: any[]; |
| 6 | + // ndim is the number of dimensions. |
| 7 | + ndim: number; |
| 8 | + // shape is the array of number that contains the length of each dimension |
| 9 | + shape: number[]; |
| 10 | + |
| 11 | + //constructor of tensor classes |
| 12 | + constructor(input?: any[] | number) { |
| 13 | + this.val = []; |
| 14 | + this.ndim = 0; |
| 15 | + this.shape = []; |
| 16 | + if (typeof input === 'number') { |
| 17 | + this.val = [input]; |
| 18 | + } else if (input !== undefined) { |
| 19 | + this.val = input; |
| 20 | + } |
| 21 | + this.initializeDimensions(); |
| 22 | + } |
| 23 | + |
| 24 | + /* initializeDimensions() function will check: |
| 25 | + 1. The length of each dimension; |
| 26 | + 2. Initialize the shape[] array of current tensor |
| 27 | + */ |
| 28 | + initializeDimensions(){ |
| 29 | + let result:number[] = []; |
| 30 | + let currentDimensionPt = 0; |
| 31 | + let pt = this.val; |
| 32 | + while (pt instanceof Array) { |
| 33 | + currentDimensionPt += 1; |
| 34 | + result.push(pt.length); |
| 35 | + pt = pt[0]; |
| 36 | + } |
| 37 | + this.shape = result; |
| 38 | + this.ndim = result.length; |
| 39 | + } |
| 40 | + |
| 41 | + // return the list of each dimension |
| 42 | + dimensions(): number[] { |
| 43 | + return this.shape; |
| 44 | + } |
| 45 | + |
| 46 | + /* return the string of this tensor in which each 2D array is |
| 47 | + formatted as a 2D matrix |
| 48 | + for example: |
| 49 | + [[[...], |
| 50 | + [...]], |
| 51 | + ... |
| 52 | + ] |
| 53 | + */ |
| 54 | + toString(): string { |
| 55 | + return JSON.stringify(this.val).split('],').join('],\n').split(']],').join(']],\n'); |
| 56 | + } |
| 57 | + |
| 58 | + /* return the string of this tensor in matrix format, |
| 59 | + which looks like the stringify 2D array |
| 60 | + for example: [[[...],[...]],[[...],[...]]] |
| 61 | + */ |
| 62 | + toStringDenseMode(): string { |
| 63 | + return JSON.stringify(this.val); |
| 64 | + } |
| 65 | + |
| 66 | + log(): Tensor { |
| 67 | + console.log(this); |
| 68 | + return this; |
| 69 | + } |
| 70 | + |
| 71 | + /* |
| 72 | + Deep clone current tensor into another Tensor object |
| 73 | + Todo: implement a more efficient way to clone |
| 74 | + */ |
| 75 | + clone() : Tensor { |
| 76 | + return JSON.parse(JSON.stringify(this)) |
| 77 | + } |
| 78 | + |
| 79 | + // Deep copy tensor A into this object |
| 80 | + copy(A:Tensor) : Tensor { |
| 81 | + const result = A.clone() |
| 82 | + this.val = result.val; |
| 83 | + this.ndim = result.ndim; |
| 84 | + this.shape = result.shape; |
| 85 | + return this; |
| 86 | + } |
| 87 | + |
| 88 | + // TODO: Initialize a zero tensor in "shape" |
| 89 | + zerosAsShape(shape: number[]) : Tensor { |
| 90 | + let returnTensor = new Tensor(); |
| 91 | + let currentSubTensor = []; |
| 92 | + return returnTensor; |
| 93 | + } |
| 94 | + |
| 95 | + /* |
| 96 | + Todo: zeros function |
| 97 | + */ |
| 98 | + // eslint-disable-next-line @typescript-eslint/no-unused-vars |
| 99 | + zeros(a0?:number,a1?:number,a2?:number,a3?:number,a4?:number,a5?:number,a6?:number,a7?:number,a8?:number,a9?:number,a10?:number,a11?:number,a12?:number,a13?:number,a14?:number,a15?:number) : Tensor { |
| 100 | + let returnTensor = new Tensor(); |
| 101 | + let shape:number[] = []; |
| 102 | + for (let i=0;i<16;i++){ |
| 103 | + // eslint-disable-next-line prefer-rest-params |
| 104 | + if (arguments[i] !== undefined) { |
| 105 | + if (arguments[i] === 0) { |
| 106 | + throw 'The dimension of the initialized zeros tensor cannot be zero.'; |
| 107 | + } |
| 108 | + // eslint-disable-next-line prefer-rest-params |
| 109 | + shape.push(arguments[i]); |
| 110 | + } |
| 111 | + } |
| 112 | + return returnTensor; |
| 113 | + } |
| 114 | + |
| 115 | + /* |
| 116 | + Todo list: |
| 117 | + 1. Constructor for certain types of tensor, such as ones, random |
| 118 | + 2. Operators for tensors |
| 119 | + 3. GPU operators for tensors |
| 120 | + */ |
| 121 | + |
| 122 | +} |
| 123 | + |
| 124 | +export function tensor2json(A: Tensor): string { |
| 125 | + return JSON.stringify(A); |
| 126 | +} |
| 127 | + |
| 128 | +export function json2tensor(json_str: string): Tensor { |
| 129 | + const obj = JSON.parse(json_str); |
| 130 | + return new Tensor(obj.val); |
| 131 | +} |
0 commit comments