@@ -201,8 +201,9 @@ def spatialleiden(
201201 Parameters
202202 ----------
203203 adata : anndata.AnnData
204- resolution : tuple[float, float], optional
204+ resolution : float | tuple[float, float], optional
205205 Resolution for the latent space and spatial layer, respectively.
206+ A single float applies to both layers.
206207 latent_neighbors : scipy.sparse.sparray | scipy.sparse.spmatrix | numpy.ndarray
207208 Matrix of row-wise neighbor definitions in the latent space layer
208209 i.e. c\\ :sub:`ij` is the connectivity of i :math:`\\ to` j.
@@ -211,12 +212,12 @@ def spatialleiden(
211212 i.e. c\\ :sub:`ij` is the connectivity of i :math:`\\ to` j.
212213 key_added : str, optional
213214 Key to store the clustering results in :py:attr:`anndata.AnnData.obs`
214- directed : tuple[bool, bool], optional
215+ directed : bool | tuple[bool, bool], optional
215216 Whether to use a directed graph for latent space and spatial neighbors,
216- respectively.
217- use_weights : tuple[bool, bool], optional
217+ respectively. A single bool applies to both layers.
218+ use_weights : bool | tuple[bool, bool], optional
218219 Whether to use weights for the edges for latent space and spatial neighbors,
219- respectively.
220+ respectively. A single bool applies to both layers.
220221 n_iterations : int, optional
221222 Number of iterations to run the Leiden algorithm. If the number is negative it
222223 runs until convergence.
0 commit comments