@@ -84,13 +84,13 @@ class Ovrlp:
8484 The center of gravity of each celltype in the 2D embedding, used for UMAP annotation.
8585 celltype_assignments : numpy.ndarray
8686 The assignments of the cell types.
87- pca_2d : sklearn.decomposition.PCA
88- The PCA object used for the 2D embedding.
89- embedder_2d : umap.UMAP
87+ pca : sklearn.decomposition.PCA
88+ The PCA object used for the 2D embedding and calculating the VSI score .
89+ umap_2d : umap.UMAP
9090 The UMAP object used for the 2D embedding.
91- pca_3d : sklearn.decomposition.PCA
91+ pca_rgb : sklearn.decomposition.PCA
9292 The PCA object used for the 3D RGB embedding.
93- embedder_3d : umap.UMAP
93+ umap_rgb : umap.UMAP
9494 The UMAP object used for the 3D RGB embedding.
9595 genes : list
9696 A list of genes to utilize in the model.
@@ -147,10 +147,10 @@ def __init__(
147147 n_jobs = n_workers if cumap_kwargs .get ("random_state" ) is None else 1
148148 cumap_kwargs ["n_jobs" ] = n_jobs
149149
150- self .pca_2d = PCA (n_components = n_components , random_state = random_state )
151- self .embedder_2d = UMAP (** (umap_kwargs | {"n_components" : 2 }))
152- self .pca_3d = PCA (n_components = 3 , random_state = random_state )
153- self .embedder_3d = UMAP (** (cumap_kwargs | {"n_components" : 3 }))
150+ self .pca = PCA (n_components = n_components , random_state = random_state )
151+ self .umap_2d = UMAP (** (umap_kwargs | {"n_components" : 2 }))
152+ self .pca_rgb = PCA (n_components = 3 , random_state = random_state )
153+ self .umap_rgb = UMAP (** (cumap_kwargs | {"n_components" : 3 }))
154154
155155 def process_coordinates (self , gridsize : float = 1 , ** kwargs ):
156156 """
@@ -225,19 +225,19 @@ def fit_pseudocells(self, pseudocells: AnnData, *, fit_umap: bool = True):
225225
226226 self .pseudocells = pseudocells
227227 X = pseudocells [:, self .genes ].X
228- self .pca_2d .fit (X )
228+ self .pca .fit (X )
229229
230230 if fit_umap :
231- factors = self .pca_2d .transform (X )
231+ factors = self .pca .transform (X )
232232
233233 print (f"Modeling { factors .shape [1 ]} pseudo-celltype clusters;" )
234234
235- self .pseudocells .obsm ["2D_UMAP" ] = self .embedder_2d .fit_transform (factors )
235+ self .pseudocells .obsm ["2D_UMAP" ] = self .umap_2d .fit_transform (factors )
236236
237- embedding_color = self .embedder_3d .fit_transform (
237+ embedding_color = self .umap_rgb .fit_transform (
238238 factors / norm (factors , axis = 1 , keepdims = True )
239239 )
240- embedding_color = _fill_color_axes (embedding_color , self .pca_3d , fit = True )
240+ embedding_color = _fill_color_axes (embedding_color , self .pca_rgb , fit = True )
241241
242242 self ._colors_min_max = (
243243 embedding_color .min (axis = 0 ),
@@ -405,7 +405,7 @@ def compute_VSI(self, *, min_transcripts: float = 2):
405405 _calculate_embedding ,
406406 gene_queue ,
407407 patch_mask ,
408- self .pca_2d .components_ ,
408+ self .pca .components_ ,
409409 bandwidth = self .KDE_bandwidth ,
410410 dtype = self .dtype ,
411411 )
@@ -602,11 +602,11 @@ def transform_pseudocells(
602602
603603 embedding , embedding_color = _transform_embeddings (
604604 pseudocells .to_numpy (),
605- self .pca_2d ,
606- embedder_2d = self .embedder_2d ,
607- embedder_3d = self .embedder_3d ,
605+ self .pca ,
606+ umap_2d = self .umap_2d ,
607+ umap_rgb = self .umap_rgb ,
608608 )
609- embedding_color = _fill_color_axes (embedding_color , self .pca_3d )
609+ embedding_color = _fill_color_axes (embedding_color , self .pca_rgb )
610610 color_min , color_max = self ._colors_min_max
611611 embedding_color = (embedding_color - color_min ) / (color_max - color_min )
612612 embedding_color = np .clip (embedding_color , 0 , 1 )
0 commit comments