Skip to content

Commit 88c259c

Browse files
committed
remove default params
1 parent d57e6be commit 88c259c

File tree

2 files changed

+1
-41
lines changed

2 files changed

+1
-41
lines changed

segmentation/JSRT2/config/train_test.cfg

Lines changed: 1 addition & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,6 @@ test_csv = ../JSRT/config/jsrt_test.csv
1010

1111
train_batch_size = 4
1212

13-
load_pixelwise_weight = False
1413
# modality number
1514
modal_num = 1
1615

@@ -20,24 +19,13 @@ valid_transform = [NormalizeWithMeanStd, LabelConvert, LabelToProbability]
2019
test_transform = [NormalizeWithMeanStd]
2120

2221
NormalizeWithMeanStd_channels = [0]
23-
NormalizeWithMeanStd_mean = None
24-
NormalizeWithMeanStd_std = None
25-
NormalizeWithMeanStd_mask = False
26-
NormalizeWithMeanStd_random_fill = False
27-
NormalizeWithMeanStd_inverse = False
2822

2923
LabelConvert_source_list = [0, 255]
3024
LabelConvert_target_list = [0, 1]
31-
LabelConvert_inverse = False
3225

3326
RandomCrop_output_size = [240, 240]
34-
RandomCrop_foreground_focus = False
35-
RandomCrop_foreground_ratio = None
36-
RandomCrop_mask_label = None
37-
RandomCrop_inverse = False
3827

3928
LabelToProbability_class_num = 2
40-
LabelToProbability_inverse = False
4129

4230
[network]
4331
# this section gives parameters for network
@@ -50,7 +38,7 @@ net_type = MyUNet2D
5038
class_num = 2
5139
in_chns = 1
5240
feature_chns = [4, 16, 24, 32, 48]
53-
dropout = [0.0, 0.0, 0.3, 0.3, 0.4, 0.5]
41+
dropout = [0.0, 0.0, 0.3, 0.4, 0.5]
5442
bilinear = True
5543

5644
[training]
@@ -64,9 +52,6 @@ MyFocalDiceLoss_Enable_Class_Weight = True
6452
MyFocalDiceLoss_beta = 1.5
6553
class_weight = [0.2, 1.0]
6654

67-
CrossEntropyLoss_Enable_Pixel_Weight = False
68-
CrossEntropyLoss_Enable_Class_Weight = False
69-
7055
# for optimizers
7156
optimizer = Adam
7257
learning_rate = 1e-3
@@ -94,12 +79,6 @@ gpus = [0]
9479
# checkpoint mode can be [0-latest, 1-best, 2-specified]
9580
ckpt_mode = 0
9681
output_dir = result
97-
evaluation_mode = True
98-
test_time_dropout = False
99-
100-
# use test time augmentation
101-
tta_mode = 0
102-
infer_sliding_window = False
10382

10483
# convert the label of prediction output
10584
label_source = [0, 1]

segmentation/prostate/config/train_test.cfg

Lines changed: 0 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,6 @@ test_csv = config/data/image_test.csv
1010

1111
train_batch_size = 4
1212

13-
load_pixelwise_weight = False
1413
# modality number
1514
modal_num = 1
1615

@@ -21,29 +20,20 @@ test_transform = [NormalizeWithMeanStd, Pad]
2120

2221

2322
NormalizeWithMeanStd_channels = [0]
24-
NormalizeWithMeanStd_mean = None
25-
NormalizeWithMeanStd_std = None
26-
NormalizeWithMeanStd_mask = False
27-
NormalizeWithMeanStd_random_fill = False
28-
NormalizeWithMeanStd_inverse = False
2923

3024
RandomFlip_flip_depth = False
3125
RandomFlip_flip_height = True
3226
RandomFlip_flip_width = True
33-
RandomFlip_inverse = False
3427

3528
RandomCrop_output_size = [48, 48, 48]
3629
RandomCrop_foreground_focus = True
3730
RandomCrop_foreground_ratio = 0.5
3831
Randomcrop_mask_label = [1]
39-
RandomCrop_inverse = False
4032

4133
LabelToProbability_class_num = 2
42-
LabelToProbability_inverse = False
4334

4435
Pad_output_size = [8, 8, 8]
4536
Pad_ceil_mode = True
46-
Pad_inverse = True
4737

4838
[network]
4939
# this section gives parameters for network
@@ -64,8 +54,6 @@ trilinear = True
6454
gpus = [0]
6555

6656
loss_type = DiceLoss
67-
DiceLoss_enable_pixel_weight = False
68-
DiceLoss_enable_class_weight = False
6957

7058
# for optimizers
7159
optimizer = Adam
@@ -93,15 +81,8 @@ gpus = [0]
9381
# checkpoint mode can be [0-latest, 1-best, 2-specified]
9482
ckpt_mode = 0
9583
output_dir = result
96-
evaluation_mode = True
97-
test_time_dropout = False
98-
99-
# use test time augmentation
100-
tta_mode = 0
10184

10285
sliding_window_enable = True
10386
sliding_window_size = [96, 96, 96]
10487
sliding_window_stride = [96, 96, 96]
10588

106-
107-

0 commit comments

Comments
 (0)