You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -15,7 +15,7 @@ python setup.py install
15
15
```
16
16
17
17
## Data
18
-
The datasets for the examples can be downloaded from [Google Drive][google_link] or [Baidu Disk][baidu_link] (extraction code: n07g). Extract the files to `PyMIC_data` after the download.
18
+
The datasets for the examples can be downloaded from [Google Drive][google_link] or [Baidu Disk][baidu_link] (extraction code: xlwg). Extract the files to `PyMIC_data` after downloading.
19
19
20
20
21
21
## List of Examples
@@ -35,8 +35,8 @@ Currently we provide the following examples in this repository:
35
35
|Noisy label learning|[seg_nll/JSRT][nll_jsrt_link]|Comparing different NLL methods for learning from noisy labels|
The weight maps will be saved in `$root_dir/slsr_conf`. Then train the new model and do inference by:
82
85
83
86
```bash
84
-
pymic_run train config/unet_clslsr.cfg
85
-
pymic_run test config/unet_clslsr.cfg
87
+
pymic_train config/unet_clslsr.cfg
88
+
pymic_test config/unet_clslsr.cfg
86
89
```
87
90
88
91
Note that the weight maps for training images are specified in the configuration file `train_csv = config/data/jsrt_train_mix_clslsr.csv`.
89
92
90
93
### Co-Teaching
91
-
The configuration file for Co-Teaching is `config/unet2d_cot.cfg`. The corresponding setting is:
94
+
The configuration file for Co-Teaching is `config/unet2d_cot.cfg`. Note that for the following methods, `supervise_type` should be set to `noisy_label`.
92
95
93
96
```bash
94
-
nll_method = CoTeaching
97
+
[dataset]
98
+
...
99
+
supervise_type = noisy_label
100
+
...
101
+
102
+
[noisy_label_learning]
103
+
method_name = CoTeaching
95
104
co_teaching_select_ratio = 0.8
96
105
rampup_start = 1000
97
106
rampup_end = 8000
98
107
```
99
108
100
109
The following commands are used for training and inference with this method, respectively:
101
110
```bash
102
-
pymic_nll train config/unet_cot.cfg
103
-
pymic_nll test config/unet_cot.cfg
111
+
pymic_train config/unet_cot.cfg
112
+
pymic_test config/unet_cot.cfg
104
113
```
105
114
106
115
### TriNet
107
116
The configuration file for TriNet is `config/unet_trinet.cfg`. The corresponding setting is:
108
117
109
118
```bash
110
-
nll_method = TriNet
119
+
[dataset]
120
+
...
121
+
supervise_type = noisy_label
122
+
...
123
+
124
+
[noisy_label_learning]
125
+
method_name = TriNet
111
126
trinet_select_ratio = 0.9
112
127
rampup_start = 1000
113
128
rampup_end = 8000
@@ -116,15 +131,21 @@ rampup_end = 8000
116
131
The following commands are used for training and inference with this method, respectively:
117
132
118
133
```bash
119
-
pymic_nll train config/unet_trinet.cfg
120
-
pymic_nll test config/unet_trinet.cfg
134
+
pymic_train config/unet_trinet.cfg
135
+
pymic_test config/unet_trinet.cfg
121
136
```
122
137
123
138
### DAST
124
139
The configuration file for DAST is `config/unet_dast.cfg`. The corresponding setting is:
0 commit comments