|
| 1 | +import gym |
| 2 | +import numpy as np |
| 3 | +import torch |
| 4 | +import torch.optim as optim |
| 5 | +import torch.nn as nn |
| 6 | +import matplotlib.pyplot as plt |
| 7 | + |
| 8 | + |
| 9 | +class ActorNetwork(nn.Module): |
| 10 | + def __init__(self, num_inputs, num_output, hidden_size): |
| 11 | + super(ActorNetwork, self).__init__() |
| 12 | + self.fc1 = nn.Linear(num_inputs, hidden_size) |
| 13 | + self.fc2 = nn.Linear(hidden_size, hidden_size) |
| 14 | + self.fc3 = nn.Linear(hidden_size, num_output) |
| 15 | + |
| 16 | + def forward(self, x): |
| 17 | + x = nn.functional.relu(self.fc1(x)) |
| 18 | + x = nn.functional.relu(self.fc2(x)) |
| 19 | + return self.fc3(x) # torch.nn.functional.softmax(self.fc3(x)) |
| 20 | + |
| 21 | + |
| 22 | +class CriticNetwork(nn.Module): |
| 23 | + def __init__(self, num_inputs, hidden_size): |
| 24 | + super(CriticNetwork, self).__init__() |
| 25 | + self.fc1 = nn.Linear(num_inputs, hidden_size) |
| 26 | + self.fc2 = nn.Linear(hidden_size, hidden_size) |
| 27 | + self.fc3 = nn.Linear(hidden_size, 1) |
| 28 | + |
| 29 | + self.theta_layer = nn.Linear(hidden_size, 3) |
| 30 | + |
| 31 | + def forward(self, x): |
| 32 | + x_ = nn.functional.relu(self.fc1(x)) |
| 33 | + x_ = nn.functional.relu(self.fc2(x_)) |
| 34 | + theta_ = self.theta_layer(x_) |
| 35 | + return self.fc3(x_) + torch.matmul(theta_, x) |
| 36 | + |
| 37 | + |
| 38 | +class MaxEntropyDeepIRL: |
| 39 | + def __init__(self, target, state_dim, action_dim, learning_rate=0.001, gamma=0.99, num_epochs=1000): |
| 40 | + self.target = target |
| 41 | + self.state_dim = state_dim |
| 42 | + self.action_dim = action_dim |
| 43 | + self.learning_rate = learning_rate |
| 44 | + # self.theta = torch.rand(state_dim + 1, requires_grad=True) |
| 45 | + self.gamma = gamma |
| 46 | + self.num_epochs = num_epochs |
| 47 | + self.actor_network = ActorNetwork(state_dim, action_dim, 100) |
| 48 | + self.critic_network = CriticNetwork(state_dim + 1, 100) |
| 49 | + self.optimizer_actor = optim.Adam(self.actor_network.parameters(), lr=learning_rate) |
| 50 | + self.optimizer_critic = optim.Adam(self.critic_network.parameters(), lr=learning_rate) |
| 51 | + |
| 52 | + def get_reward(self, state, action): |
| 53 | + state_action = list(state) + list([action]) |
| 54 | + state_action = torch.Tensor(state_action) |
| 55 | + return self.critic_network(state_action) |
| 56 | + |
| 57 | + def expert_feature_expectations(self, demonstrations): |
| 58 | + feature_expectations = torch.zeros(self.state_dim) |
| 59 | + |
| 60 | + for demonstration in demonstrations: |
| 61 | + for state, _, _ in demonstration: |
| 62 | + state_tensor = torch.tensor(state, dtype=torch.float32) |
| 63 | + feature_expectations += state_tensor.squeeze() |
| 64 | + |
| 65 | + feature_expectations /= demonstrations.shape[0] |
| 66 | + return feature_expectations |
| 67 | + |
| 68 | + def maxent_irl(self, expert, learner): |
| 69 | + # Update critic network |
| 70 | + |
| 71 | + self.optimizer_critic.zero_grad() |
| 72 | + |
| 73 | + # Loss function for critic network |
| 74 | + loss_critic = torch.nn.functional.mse_loss(learner, expert) |
| 75 | + loss_critic.backward() |
| 76 | + |
| 77 | + self.optimizer_critic.step() |
| 78 | + |
| 79 | + def update_q_network(self, state_array, action, reward, next_state): |
| 80 | + self.optimizer_actor.zero_grad() |
| 81 | + |
| 82 | + state_tensor = torch.tensor(state_array, dtype=torch.float32) |
| 83 | + next_state_tensor = torch.tensor(next_state, dtype=torch.float32) |
| 84 | + |
| 85 | + q_values = self.actor_network(state_tensor) |
| 86 | + # q_1 = self.actor_network(state_tensor)[action] |
| 87 | + # q_2 = reward + self.gamma * max(self.actor_network(next_state_tensor)) |
| 88 | + next_q_values = reward + self.gamma * self.actor_network(next_state_tensor) |
| 89 | + |
| 90 | + loss_actor = nn.functional.mse_loss(q_values, next_q_values) |
| 91 | + loss_actor.backward() |
| 92 | + self.optimizer_actor.step() |
| 93 | + |
| 94 | + def get_demonstrations(self): |
| 95 | + env_low = self.target.observation_space.low |
| 96 | + env_high = self.target.observation_space.high |
| 97 | + env_distance = (env_high - env_low) / 20 # self.one_feature |
| 98 | + |
| 99 | + raw_demo = np.load(file="expert_demo/expert_demo.npy") |
| 100 | + demonstrations = np.zeros((len(raw_demo), len(raw_demo[0]), 3)) |
| 101 | + for x in range(len(raw_demo)): |
| 102 | + for y in range(len(raw_demo[0])): |
| 103 | + position_idx = int((raw_demo[x][y][0] - env_low[0]) / env_distance[0]) |
| 104 | + velocity_idx = int((raw_demo[x][y][1] - env_low[1]) / env_distance[1]) |
| 105 | + state_idx = position_idx + velocity_idx * 20 # self.one_feature |
| 106 | + |
| 107 | + demonstrations[x][y][0] = state_idx |
| 108 | + demonstrations[x][y][1] = raw_demo[x][y][2] |
| 109 | + |
| 110 | + return demonstrations |
| 111 | + |
| 112 | + def train(self): |
| 113 | + demonstrations = self.get_demonstrations() |
| 114 | + expert = self.expert_feature_expectations(demonstrations) |
| 115 | + |
| 116 | + learner_feature_expectations = torch.zeros(self.state_dim, requires_grad=True) # Add requires_grad=True |
| 117 | + episodes, scores = [], [] |
| 118 | + |
| 119 | + for episode in range(self.num_epochs): |
| 120 | + state, info = self.target.reset() |
| 121 | + score = 0 |
| 122 | + |
| 123 | + if (episode != 0 and episode == 10) or (episode > 10 and episode % 5 == 0): |
| 124 | + learner = learner_feature_expectations / episode |
| 125 | + self.maxent_irl(expert, learner) |
| 126 | + |
| 127 | + while True: |
| 128 | + state_tensor = torch.tensor(state, dtype=torch.float32) |
| 129 | + |
| 130 | + q_state = self.actor_network(state_tensor) |
| 131 | + action = torch.argmax(q_state).item() |
| 132 | + next_state, reward, done, _, _ = self.target.step(action) |
| 133 | + |
| 134 | + irl_reward = self.get_reward(state, action) |
| 135 | + self.update_q_network(state, action, irl_reward, next_state) |
| 136 | + |
| 137 | + print("Q Actor Network", state, q_state) |
| 138 | + print("Reward", reward, "IRL Reward", irl_reward) |
| 139 | + |
| 140 | + learner_feature_expectations = learner_feature_expectations + state_tensor.squeeze() |
| 141 | + |
| 142 | + print(expert) |
| 143 | + print(learner_feature_expectations) |
| 144 | + |
| 145 | + score += reward |
| 146 | + state = next_state |
| 147 | + if done: |
| 148 | + scores.append(score) |
| 149 | + episodes.append(episode) |
| 150 | + break |
| 151 | + |
| 152 | + if episode % 1 == 0: |
| 153 | + score_avg = np.mean(scores) |
| 154 | + print('{} episode score is {:.2f}'.format(episode, score_avg)) |
| 155 | + plt.plot(episodes, scores, 'b') |
| 156 | + plt.savefig("./learning_curves/maxent_30000_network.png") |
| 157 | + |
| 158 | + torch.save(self.q_network.state_dict(), "./results/maxent_30000_q_network.pth") |
| 159 | + |
| 160 | + def test(self): |
| 161 | + episodes, scores = [], [] |
| 162 | + |
| 163 | + for episode in range(10): |
| 164 | + state = self.target.reset() |
| 165 | + score = 0 |
| 166 | + |
| 167 | + while True: |
| 168 | + self.target.render() |
| 169 | + state_tensor = torch.tensor(state, dtype=torch.float32).unsqueeze(0) |
| 170 | + |
| 171 | + action = torch.argmax(self.q_network(state_tensor)).item() |
| 172 | + next_state, reward, done, _, _ = self.target.step(action) |
| 173 | + |
| 174 | + score += reward |
| 175 | + state = next_state |
| 176 | + |
| 177 | + if done: |
| 178 | + scores.append(score) |
| 179 | + episodes.append(episode) |
| 180 | + plt.plot(episodes, scores, 'b') |
| 181 | + plt.savefig("./learning_curves/maxent_test_30000_network.png") |
| 182 | + break |
| 183 | + |
| 184 | + if episode % 1 == 0: |
| 185 | + print('{} episode score is {:.2f}'.format(episode, score)) |
0 commit comments