|
| 1 | +# |
| 2 | +# This file is a refactored implementation of the Maximum Entropy IRL from: |
| 3 | +# https://github.com/reinforcement-learning-kr/lets-do-irl/tree/master/mountaincar/maxent |
| 4 | +# It is a class type implementation restructured for our use case. |
| 5 | +# |
| 6 | + |
| 7 | +import gym |
| 8 | +import numpy as np |
| 9 | +import matplotlib.pyplot as plt |
| 10 | + |
| 11 | + |
| 12 | +class MaxEntropyIRL: |
| 13 | + def __init__(self, env, feature_matrix, one_feature, q_table, q_learning_rate, gamma, n_states, theta): |
| 14 | + self.env = env |
| 15 | + self.feature_matrix = feature_matrix |
| 16 | + self.one_feature = one_feature |
| 17 | + self.q_table = q_table |
| 18 | + self.q_learning_rate = q_learning_rate |
| 19 | + self.theta = theta |
| 20 | + self.gamma = gamma |
| 21 | + self.n_states = n_states |
| 22 | + |
| 23 | + def get_feature_matrix(self): |
| 24 | + """ |
| 25 | + Returns the feature matrix. |
| 26 | + :return: |
| 27 | + """ |
| 28 | + return self.feature_matrix |
| 29 | + |
| 30 | + def get_reward(self, n_states, state_idx): |
| 31 | + """ |
| 32 | + Returns the achieved reward. |
| 33 | + :param n_states: |
| 34 | + :param state_idx: |
| 35 | + :return: |
| 36 | + """ |
| 37 | + irl_rewards = self.feature_matrix.dot(self.theta).reshape((n_states,)) |
| 38 | + return irl_rewards[state_idx] |
| 39 | + |
| 40 | + def get_demonstrations(self): |
| 41 | + """ |
| 42 | + Parses the demonstrations and returns the demonstrations. |
| 43 | + :param one_feature: |
| 44 | + :return: |
| 45 | + """ |
| 46 | + env_low = self.env.observation_space.low |
| 47 | + env_high = self.env.observation_space.high |
| 48 | + env_distance = (env_high - env_low) / self.one_feature |
| 49 | + |
| 50 | + raw_demo = np.load(file="src/irlwpython/expert_demo/expert_demo.npy") |
| 51 | + demonstrations = np.zeros((len(raw_demo), len(raw_demo[0]), 3)) |
| 52 | + for x in range(len(raw_demo)): |
| 53 | + for y in range(len(raw_demo[0])): |
| 54 | + position_idx = int((raw_demo[x][y][0] - env_low[0]) / env_distance[0]) |
| 55 | + velocity_idx = int((raw_demo[x][y][1] - env_low[1]) / env_distance[1]) |
| 56 | + state_idx = position_idx + velocity_idx * self.one_feature |
| 57 | + |
| 58 | + demonstrations[x][y][0] = state_idx |
| 59 | + demonstrations[x][y][1] = raw_demo[x][y][2] |
| 60 | + |
| 61 | + return demonstrations |
| 62 | + |
| 63 | + def expert_feature_expectations(self, demonstrations): |
| 64 | + """ |
| 65 | + Returns the feature expectations. |
| 66 | + :param demonstrations: |
| 67 | + :return: |
| 68 | + """ |
| 69 | + feature_expectations = np.zeros(self.feature_matrix.shape[0]) |
| 70 | + |
| 71 | + for demonstration in demonstrations: |
| 72 | + for state_idx, _, _ in demonstration: |
| 73 | + feature_expectations += self.feature_matrix[int(state_idx)] |
| 74 | + |
| 75 | + feature_expectations /= demonstrations.shape[0] |
| 76 | + return feature_expectations |
| 77 | + |
| 78 | + def state_to_idx(self, env, state): |
| 79 | + """ |
| 80 | + Converts state (pos, vel) to the integer value using the mountain car environment. |
| 81 | + :param state: |
| 82 | + :return: |
| 83 | + """ |
| 84 | + """ """ |
| 85 | + env_low = env.observation_space.low |
| 86 | + env_high = env.observation_space.high |
| 87 | + env_distance = (env_high - env_low) / self.one_feature |
| 88 | + position_idx = int((state[0] - env_low[0]) / env_distance[0]) |
| 89 | + velocity_idx = int((state[1] - env_low[1]) / env_distance[1]) |
| 90 | + state_idx = position_idx + velocity_idx * self.one_feature |
| 91 | + return state_idx |
| 92 | + |
| 93 | + def maxent_irl(self, expert, learner, learning_rate): |
| 94 | + """ |
| 95 | + Max Entropy Learning step. |
| 96 | + :param expert: |
| 97 | + :param learner: |
| 98 | + :param learning_rate: |
| 99 | + :return: |
| 100 | + """ |
| 101 | + gradient = expert - learner |
| 102 | + self.theta += learning_rate * gradient |
| 103 | + |
| 104 | + # Clip theta |
| 105 | + for j in range(len(self.theta)): |
| 106 | + if self.theta[j] > 0: |
| 107 | + self.theta[j] = 0 |
| 108 | + |
| 109 | + def update_q_table(self, state, action, reward, next_state): |
| 110 | + """ |
| 111 | + Updates the Q table for a specified state and action. |
| 112 | + :param state: |
| 113 | + :param action: |
| 114 | + :param reward: |
| 115 | + :param next_state: |
| 116 | + :return: |
| 117 | + """ |
| 118 | + q_1 = self.q_table[state][action] |
| 119 | + q_2 = reward + self.gamma * max(self.q_table[next_state]) |
| 120 | + self.q_table[state][action] += self.q_learning_rate * (q_2 - q_1) |
| 121 | + |
| 122 | + |
| 123 | +# Training Loop |
| 124 | +def train(agent, env, theta_learning_rate, episode_count=30000): |
| 125 | + demonstrations = agent.target.get_demonstrations() |
| 126 | + expert = agent.expert_feature_expectations(demonstrations) |
| 127 | + learner_feature_expectations = np.zeros(agent.n_states) |
| 128 | + |
| 129 | + episodes, scores = [], [] |
| 130 | + for episode in range(episode_count): |
| 131 | + state, info = env.reset() |
| 132 | + score = 0 |
| 133 | + |
| 134 | + # Mini-Batches: |
| 135 | + if (episode + 1) % 10 == 0: |
| 136 | + # calculate density |
| 137 | + learner = learner_feature_expectations / episode |
| 138 | + learner_feature_expectations = np.zeros(agent.n_states) |
| 139 | + |
| 140 | + agent.maxent_irl(expert, learner, theta_learning_rate) |
| 141 | + |
| 142 | + state = state |
| 143 | + while True: |
| 144 | + state_idx = agent.state_to_idx(env, state) |
| 145 | + action = np.argmax(agent.q_table[state_idx]) |
| 146 | + |
| 147 | + # Run one timestep of the environment's dynamics. |
| 148 | + next_state, reward, done, _, _ = env.step(action) |
| 149 | + |
| 150 | + # Get pseudo-reward and update q table |
| 151 | + irl_reward = agent.get_reward(agent.n_states, state_idx) |
| 152 | + next_state_idx = agent.state_to_idx(env, next_state) |
| 153 | + agent.update_q_table(state_idx, action, irl_reward, next_state_idx) |
| 154 | + |
| 155 | + # State counting for densitiy |
| 156 | + learner_feature_expectations += agent.feature_matrix[int(state_idx)] |
| 157 | + |
| 158 | + score += reward |
| 159 | + state = next_state |
| 160 | + if done: |
| 161 | + scores.append(score) |
| 162 | + episodes.append(episode) |
| 163 | + break |
| 164 | + |
| 165 | + if (episode + 1) % 1000 == 0: |
| 166 | + score_avg = np.mean(scores) |
| 167 | + print('{} episode score is {:.2f}'.format(episode, score_avg)) |
| 168 | + save_plot_as_png(episodes, scores, |
| 169 | + f"src/irlwpython/learning_curves/maxent_{episode_count}_{episode}_qtable.png") |
| 170 | + save_heatmap_as_png(learner.reshape((20, 20)), |
| 171 | + f"src/irlwpython/heatmap/learner_{episode}_flat.png") |
| 172 | + save_heatmap_as_png(agent.theta.reshape((20, 20)), |
| 173 | + f"src/irlwpython/heatmap/theta_{episode}_flat.png") |
| 174 | + |
| 175 | + np.save(f"src/irlwpython/results/maxent_{episode}_qtable", arr=agent.q_table) |
| 176 | + |
| 177 | + |
| 178 | +def save_heatmap_as_png(data, output_path, title=None, xlabel="Position", ylabel="Velocity"): |
| 179 | + """ |
| 180 | + Create a heatmap from a numpy array and save it as a PNG file. |
| 181 | + :param data: 2D numpy array containing the heatmap data. |
| 182 | + :param output_path: Output path for saving the PNG file. |
| 183 | + :param xlabel: Label for the x-axis (optional). |
| 184 | + :param ylabel: Label for the y-axis (optional). |
| 185 | + :param title: Title for the plot (optional). |
| 186 | + """ |
| 187 | + fig, ax = plt.subplots() |
| 188 | + im = ax.imshow(data, cmap='viridis', interpolation='nearest') |
| 189 | + plt.colorbar(im) |
| 190 | + |
| 191 | + if xlabel: |
| 192 | + plt.xlabel(xlabel) |
| 193 | + if ylabel: |
| 194 | + plt.ylabel(ylabel) |
| 195 | + if title: |
| 196 | + plt.title(title) |
| 197 | + |
| 198 | + plt.savefig(output_path, format='png') |
| 199 | + plt.close(fig) |
| 200 | + |
| 201 | + |
| 202 | +def save_plot_as_png(x, y, output_path, title=None, xlabel="Episodes", ylabel="Scores"): |
| 203 | + """ |
| 204 | + Create a line plot from x and y data and save it as a PNG file. |
| 205 | + :param x: 1D numpy array or list representing the x-axis values. |
| 206 | + :param y: 1D numpy array or list representing the y-axis values. |
| 207 | + :param output_path: Output path for saving the plot as a PNG file. |
| 208 | + :param xlabel: Label for the x-axis (optional). |
| 209 | + :param ylabel: Label for the y-axis (optional). |
| 210 | + :param title: Title for the plot (optional). |
| 211 | + """ |
| 212 | + fig, ax = plt.subplots() |
| 213 | + ax.plot(x, y) |
| 214 | + |
| 215 | + if xlabel: |
| 216 | + plt.xlabel(xlabel) |
| 217 | + if ylabel: |
| 218 | + plt.ylabel(ylabel) |
| 219 | + if title: |
| 220 | + plt.title(title) |
| 221 | + |
| 222 | + plt.savefig(output_path, format='png') |
| 223 | + plt.close(fig) |
| 224 | + |
| 225 | + |
| 226 | +# Main function |
| 227 | +if __name__ == "__main__": |
| 228 | + n_states = 400 # position - 20, velocity - 20 -> 20*20 |
| 229 | + n_actions = 3 # Accelerate to the left: 0, Don’t accelerate: 1, Accelerate to the right: 2 |
| 230 | + state_dim = 2 # Velocity and position |
| 231 | + one_feature = 20 |
| 232 | + feature_matrix = np.eye(n_states) |
| 233 | + |
| 234 | + gamma = 0.99 |
| 235 | + q_learning_rate = 0.03 |
| 236 | + |
| 237 | + # Theta works as Rewards |
| 238 | + theta_learning_rate = 0.001 |
| 239 | + theta = -(np.random.uniform(size=(n_states,))) |
| 240 | + |
| 241 | + env = gym.make('MountainCar-v0') |
| 242 | + |
| 243 | + q_table = np.zeros((n_states, n_actions)) |
| 244 | + agent = MaxEntropyIRL(env, feature_matrix, one_feature, q_table, q_learning_rate, gamma, n_states, theta) |
| 245 | + |
| 246 | + train(agent, env, theta_learning_rate) |
0 commit comments