|
1 | 1 | <!-- |
2 | 2 | --- |
3 | | -title: SAM2 with Images |
| 3 | +title: Deepgram Text To Speech |
4 | 4 | type: guide |
5 | 5 | tier: all |
6 | 6 | order: 15 |
7 | 7 | hide_menu: true |
8 | 8 | hide_frontmatter_title: true |
9 | | -meta_title: Using SAM2 with Label Studio for Image Annotation |
10 | | -categories: |
11 | | - - Computer Vision |
12 | | - - Image Annotation |
13 | | - - Object Detection |
14 | | - - Segment Anything Model |
15 | | -image: "/tutorials/sam2-images.png" |
| 9 | +meta_title: Using Deepgram with label Studio for Text to Speech |
16 | 10 | --- |
17 | 11 | --> |
18 | 12 |
|
19 | | -# Using SAM2 with Label Studio for Image Annotation |
| 13 | +# Using Deepgram with Label Studio for Text to Speech annotation |
20 | 14 |
|
21 | | -Segment Anything 2, or SAM 2, is a model released by Meta in July 2024. An update to the original Segment Anything Model, |
22 | | -SAM 2 provides even better object segmentation for both images and video. In this guide, we'll show you how to use |
23 | | -SAM 2 for better image labeling with label studio. |
| 15 | +This backend uses the Deepgram API to take the input text from the user, do text to speech, and return the output audio for annotation in Label Studio. |
24 | 16 |
|
25 | | -Click on the image below to watch our ML Evangelist Micaela Kaplan explain how to link SAM 2 to your Label Studio Project. |
26 | | -You'll need to follow the instructions below to stand up an instance of SAM2 before you can link your model! |
| 17 | +IMPORTANT NOTE: YOU MUST REFRESH THE PAGE AFTER SUBMITTING THE TEXT TO SEE THE AUDIO APPEAR. |
27 | 18 |
|
28 | | -[](https://www.youtube.com/watch?v=FTg8P8z4RgY) |
| 19 | +## Prerequistes |
| 20 | +1. [Deepgram API Key](https://deepgram.com/) -- create an account and follow the instructions to get an api key with default permissions. Store this key as `DEEPGRAM_API_KEY` in `docker_compose.yml` |
| 21 | +2. AWS Storage -- make sure you configure the following parameters in `docker_compose.yml`: |
| 22 | + - `AWS_ACCESS_KEY_ID` -- your AWS access key id |
| 23 | + - `AWS_SECRET_ACCESS_KEY` -- your AWS secret access key |
| 24 | + - `AWS_SESSION_TOKEN` -- your AWS session token |
| 25 | + - `AWS_DEFAULT_REGION` - the region you want to use for S3 |
| 26 | + - `S3_BUCKET` -- the name of the bucket where you'd like to store the created audio files |
| 27 | + - `S3_FOLDER` -- the name of the folder within the specified bucket where you'd like to store the audio files. |
| 28 | +3. Label Studio -- make sure you set your `LABEL_STUDIO_URL` and your `LABEL_STUDIO_API_KEY` in `docker_compose.yml`. As of 11/12/25, you must use the LEGACY TOKEN. |
29 | 29 |
|
30 | | -## Before you begin |
31 | | - |
32 | | -Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart). |
33 | | - |
34 | | -This tutorial uses the [`segment_anything_2_image` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/segment_anything_2_image). |
35 | | - |
36 | | -Note that as of 8/1/2024, SAM2 only runs on GPU. |
37 | | - |
38 | | -## Labeling configuration |
39 | | - |
40 | | -The current implementation of the Label Studio SAM2 ML backend works using Interactive mode. The user-guided inputs are: |
41 | | -- `KeypointLabels` |
42 | | -- `RectangleLabels` |
43 | | - |
44 | | -And then SAM2 outputs `BrushLabels` as a result. |
45 | | - |
46 | | -This means all three control tags should be represented in your labeling configuration: |
47 | | - |
48 | | -```xml |
| 30 | +## Labeling Config |
| 31 | +This is the base labeling config to be used with this backend. Note that you may add additional annotations to the document after the audio without breaking anything! |
| 32 | +``` |
49 | 33 | <View> |
50 | | -<Style> |
51 | | - .main { |
52 | | - font-family: Arial, sans-serif; |
53 | | - background-color: #f5f5f5; |
54 | | - margin: 0; |
55 | | - padding: 20px; |
56 | | - } |
57 | | - .container { |
58 | | - display: flex; |
59 | | - justify-content: space-between; |
60 | | - margin-bottom: 20px; |
61 | | - } |
62 | | - .column { |
63 | | - flex: 1; |
64 | | - padding: 10px; |
65 | | - background-color: #fff; |
66 | | - border-radius: 5px; |
67 | | - box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); |
68 | | - text-align: center; |
69 | | - } |
70 | | - .column .title { |
71 | | - margin: 0; |
72 | | - color: #333; |
73 | | - } |
74 | | - .column .label { |
75 | | - margin-top: 10px; |
76 | | - padding: 10px; |
77 | | - background-color: #f9f9f9; |
78 | | - border-radius: 3px; |
79 | | - } |
80 | | - .image-container { |
81 | | - width: 100%; |
82 | | - height: 300px; |
83 | | - background-color: #ddd; |
84 | | - border-radius: 5px; |
85 | | - } |
86 | | -</Style> |
87 | | -<View className="main"> |
88 | | - <View className="container"> |
89 | | - <View className="column"> |
90 | | - <View className="title">Choose Label</View> |
91 | | - <View className="label"> |
92 | | - <BrushLabels name="tag" toName="image"> |
93 | | - |
94 | | - |
95 | | - <Label value="defect" background="#FFA39E"/></BrushLabels> |
96 | | - </View> |
97 | | - </View> |
98 | | - <View className="column"> |
99 | | - <View className="title">Use Keypoint</View> |
100 | | - <View className="label"> |
101 | | - <KeyPointLabels name="tag2" toName="image" smart="true"> |
102 | | - |
103 | | - |
104 | | - <Label value="defect" background="#250dd3"/></KeyPointLabels> |
105 | | - </View> |
106 | | - </View> |
107 | | - <View className="column"> |
108 | | - <View className="title">Use Rectangle</View> |
109 | | - <View className="label"> |
110 | | - <RectangleLabels name="tag3" toName="image" smart="true"> |
111 | | - |
112 | | - |
113 | | - <Label value="defect" background="#FFC069"/></RectangleLabels> |
114 | | - </View> |
115 | | - </View> |
116 | | - </View> |
117 | | - <View className="image-container"> |
118 | | - <Image name="image" value="$image" zoom="true" zoomControl="true"/> |
119 | | - </View> |
| 34 | + <Header value="What would you like to TTS?"/> |
| 35 | + <TextArea name="text" toName="audio" placeholder="What do you want to tts?" value="$text" valrows="4" maxSubmissions="1"/> |
| 36 | + <Audio name="audio" value="$audio" zoom="true" hotkey="ctrl+enter"/> |
120 | 37 | </View> |
121 | | -</View> |
122 | | -``` |
123 | | - |
124 | | -## Running from source |
125 | | - |
126 | | -1. To run the ML backend without Docker, you have to clone the repository and install all dependencies using pip: |
127 | | - |
128 | | -```bash |
129 | | -git clone https://github.com/HumanSignal/label-studio-ml-backend.git |
130 | | -cd label-studio-ml-backend |
131 | | -pip install -e . |
132 | | -cd label_studio_ml/examples/segment_anything_2_image |
133 | | -pip install -r requirements.txt |
134 | | -``` |
135 | | - |
136 | | -2. Download [`segment-anything-2` repo](https://github.com/facebookresearch/sam2) into the root directory. Install SegmentAnything model and download checkpoints using [the official Meta documentation](https://github.com/facebookresearch/sam2?tab=readme-ov-file#installation) |
137 | | -You should now have the following folder structure: |
138 | | - |
139 | | - |
140 | | - | root directory |
141 | | - | label-studio-ml-backend |
142 | | - | label-studio-ml |
143 | | - | examples |
144 | | - | segment_anything_2_image |
145 | | - | sam2 |
146 | | - | sam2 |
147 | | - | checkpoints |
148 | | - |
149 | | - |
150 | | -3. Then you can start the ML backend on the default port `9090`: |
151 | | - |
152 | | -```bash |
153 | | -cd ~/sam2 |
154 | | -label-studio-ml start ../label-studio-ml-backend/label_studio_ml/examples/segment_anything_2_image |
155 | | -``` |
156 | | - |
157 | | -Due to breaking changes from Meta [HERE](https://github.com/facebookresearch/sam2/blob/c2ec8e14a185632b0a5d8b161928ceb50197eddc/sam2/build_sam.py#L20), it is CRUCIAL that you run this command from the sam2 directory at your root directory. |
158 | | - |
159 | | -4. Connect running ML backend server to Label Studio: go to your project `Settings -> Machine Learning -> Add Model` and specify `http://localhost:9090` as a URL. Read more in the official [Label Studio documentation](https://labelstud.io/guide/ml#Connect-the-model-to-Label-Studio). |
160 | | - |
161 | | -## Running with Docker |
162 | | - |
163 | | -1. Start Machine Learning backend on `http://localhost:9090` with prebuilt image: |
164 | | - |
165 | | -```bash |
166 | | -docker-compose up |
167 | 38 | ``` |
| 39 | +## A Data Note |
| 40 | +Note that in order for this to work, you need to upload dummy data (i.e. empty text and audio) so that the tasks populate. You can use `dummy_data.json` as this data. |
168 | 41 |
|
169 | | -2. Validate that backend is running |
170 | | - |
171 | | -```bash |
172 | | -$ curl http://localhost:9090/ |
173 | | -{"status":"UP"} |
174 | | -``` |
175 | | - |
176 | | -3. Connect to the backend from Label Studio running on the same host: go to your project `Settings -> Machine Learning -> Add Model` and specify `http://localhost:9090` as a URL. |
177 | | - |
178 | | - |
179 | | -## Configuration |
180 | | -Parameters can be set in `docker-compose.yml` before running the container. |
181 | | - |
182 | | - |
183 | | -The following common parameters are available: |
184 | | -- `DEVICE` - specify the device for the model server (currently only `cuda` is supported, `cpu` is coming soon) |
185 | | -- `MODEL_CONFIG` - SAM2 model configuration file (`sam2_hiera_l.yaml` by default) |
186 | | -- `MODEL_CHECKPOINT` - SAM2 model checkpoint file (`sam2_hiera_large.pt` by default) |
187 | | -- `BASIC_AUTH_USER` - specify the basic auth user for the model server |
188 | | -- `BASIC_AUTH_PASS` - specify the basic auth password for the model server |
189 | | -- `LOG_LEVEL` - set the log level for the model server |
190 | | -- `WORKERS` - specify the number of workers for the model server |
191 | | -- `THREADS` - specify the number of threads for the model server |
192 | | - |
193 | | -## Customization |
194 | | - |
195 | | -The ML backend can be customized by adding your own models and logic inside the `./segment_anything_2` directory. |
| 42 | +## Configuring the backend |
| 43 | +When you attach the model to Label Studio in your model settings, make sure to toggle ON interactive preannotations! |
0 commit comments