|
| 1 | +module CaretTSPredictors |
| 2 | + |
| 3 | +using Distributed |
| 4 | +import PythonCall |
| 5 | +const PYC = PythonCall |
| 6 | + |
| 7 | +# standard included modules |
| 8 | +using DataFrames: DataFrame |
| 9 | +using Random |
| 10 | +using ..AbsTypes |
| 11 | +using ..Utils |
| 12 | + |
| 13 | +import ..AbsTypes: fit, fit!, transform, transform! |
| 14 | +export fit, fit!, transform, transform! |
| 15 | +export CaretTSPredictor, carettspredictors |
| 16 | +export carettsdriver |
| 17 | + |
| 18 | +function carettspredictors() |
| 19 | + println("Use available learners:") |
| 20 | + [print(learner, " ") for learner in keys(carettspredictor_dict)] |
| 21 | + println() |
| 22 | +end |
| 23 | + |
| 24 | +const CTS = PYC.pynew() |
| 25 | +const PD = PYC.pynew() |
| 26 | + |
| 27 | +function __init__() |
| 28 | + PYC.pycopy!(CTS, PYC.pyimport("pycaret.time_series")) |
| 29 | + PYC.pycopy!(PD, PYC.pyimport("pandas")) |
| 30 | +end |
| 31 | + |
| 32 | +const carettspredictor_dict = Dict{String,PYC.Py}( |
| 33 | + "exp_smooth" => CTS, "ets" => CTS, "arima" => CTS, |
| 34 | + "auto_arima" => CTS, "theta" => CTS, |
| 35 | + "huber_cds_dt" => CTS, "knn_cds_dt" => CTS, |
| 36 | + "lr_cds_dt" => CTS, "ridge_cds_dt" => CTS, "br_cds_dt" => CTS, |
| 37 | + "en_cds_dt" => CTS, "lasso_cds_dt" => CTS, "et_cds_dt" => CTS, |
| 38 | + "rf_cds_dt" => CTS, "dt_cds_dt" => CTS, "lightgbm_cds_dt" => CTS, |
| 39 | + "ada_cds_dt" => CTS, "omp_cds_dt" => CTS, "gbr_cds_dt" => CTS, |
| 40 | + "llar_cds_dt" => CTS, "naive" => CTS, |
| 41 | + "polytrend" => CTS, "croston" => CTS, "grand_means" => CTS, |
| 42 | + "bats" => CTS, "tbats" => CTS |
| 43 | + #"snaive","stlf","prophet","catboost_cds_dt" |
| 44 | + |
| 45 | +) |
| 46 | + |
| 47 | +const carettsexp_dict = Dict{String,PYC.Py}() |
| 48 | +carettsexp_dict["TSForecastingExperiment"] = CTS |
| 49 | + |
| 50 | + |
| 51 | +mutable struct CaretTSPredictor <: Learner |
| 52 | + name::String |
| 53 | + model::Dict{Symbol,Any} |
| 54 | + function CaretTSPredictor(args=Dict()) |
| 55 | + default_args = Dict( |
| 56 | + :name => "caretts", |
| 57 | + :verbose => false, |
| 58 | + :learner => "auto", |
| 59 | + :experiment => "TSForecastingExperiment", |
| 60 | + :output => "forecast", |
| 61 | + :forecast_horizon => 10, |
| 62 | + :impl_args => Dict{Symbol,Any}() |
| 63 | + ) |
| 64 | + cargs = nested_dict_merge(default_args, args) |
| 65 | + cargs[:name] = cargs[:name] * "_" * randstring(3) |
| 66 | + skl = cargs[:learner] |
| 67 | + if skl != "auto" && !(skl in keys(carettspredictor_dict)) |
| 68 | + println("$skl is not supported.") |
| 69 | + println() |
| 70 | + carettspredictors() |
| 71 | + error("Argument keyword error") |
| 72 | + end |
| 73 | + new(cargs[:name], cargs) |
| 74 | + end |
| 75 | +end |
| 76 | + |
| 77 | +function CaretTSPredictor(learner::String, args::Dict) |
| 78 | + CaretTSPredictor(Dict(:learner => learner, :name => learner, args...)) |
| 79 | +end |
| 80 | + |
| 81 | +function CaretTSPredictor(learner::String; args...) |
| 82 | + CaretTSPredictor(Dict(:learner => learner, :name => learner, :impl_args => Dict(pairs(args)))) |
| 83 | +end |
| 84 | + |
| 85 | +function fit!(adl::CaretTSPredictor, xx::DataFrame, ::Vector=[])::Nothing |
| 86 | + xh = xx |> Array |
| 87 | + py_dataframe = getproperty(PD, "DataFrame") |
| 88 | + x = py_dataframe(xh) |
| 89 | + impl_args = copy(adl.model[:impl_args]) |
| 90 | + expt = adl.model[:experiment] |
| 91 | + learner = adl.model[:learner] |
| 92 | + py_experiment = getproperty(carettsexp_dict[expt], expt)() |
| 93 | + _verbose = adl.model[:verbose] |
| 94 | + py_experiment.setup(x, session_id=123, verbose=_verbose) |
| 95 | + if learner != "auto" |
| 96 | + clearner = py_experiment.create_model(learner, verbose=_verbose) |
| 97 | + @info "evaluating the model: $clearner" |
| 98 | + finalmodel = py_experiment.finalize_model(clearner) |
| 99 | + adl.model[:finalmodel] = finalmodel |
| 100 | + else |
| 101 | + best = py_experiment.compare_models(verbose=_verbose) |
| 102 | + @info "evaluating the best model: $best" |
| 103 | + finalmodel = py_experiment.finalize_model(best) |
| 104 | + adl.model[:finalmodel] = finalmodel |
| 105 | + end |
| 106 | + |
| 107 | + # save experiment |
| 108 | + #adl.model[:py_experiment] = py_experiment |
| 109 | + return nothing |
| 110 | +end |
| 111 | + |
| 112 | +function transform!(adl::CaretTSPredictor, xx::DataFrame) |
| 113 | + xh = deepcopy(xx) |> Array |
| 114 | + py_dataframe = getproperty(PD, "DataFrame") |
| 115 | + x = py_dataframe(xh) |
| 116 | + learner = adl.model[:learner] |
| 117 | + expt = adl.model[:experiment] |
| 118 | + py_experiment = getproperty(carettsexp_dict[expt], expt)() |
| 119 | + _verbose = adl.model[:verbose] |
| 120 | + py_experiment.setup(x, session_id=123, verbose=_verbose) |
| 121 | + forecast_horizon = adl.model[:forecast_horizon] |
| 122 | + finalmodel = adl.model[:finalmodel] |
| 123 | + res = py_experiment.predict_model(finalmodel, fh=forecast_horizon, verbose=_verbose) |
| 124 | + finalres = res.y_pred |> PYC.PyArray |> Vector |
| 125 | + return finalres |
| 126 | +end |
| 127 | + |
| 128 | +function carettsdriver() |
| 129 | + DT = PYC.pyimport("pycaret.datasets") |
| 130 | + PD = PYC.pyimport("pandas") |
| 131 | + get_data = getproperty(DT, "get_data") |
| 132 | + dftmp = get_data("airline") |> collect |
| 133 | + dt=PYC.pyconvert.(Float64,dftmp) |
| 134 | + df = DataFrame(x1=dt) |
| 135 | + #df = rand(100, 1) |> x -> DataFrame(x, :auto) |
| 136 | + #bmodel = CaretTSPredictor("auto_arima", Dict(:verbose => true,:forecast_horizon=>30)) |
| 137 | + bmodel = CaretTSPredictor("auto", Dict(:verbose => true,:forecast_horizon=>30)) |
| 138 | + bestres = fit_transform!(bmodel, df) |
| 139 | + #tabres = @sync @distributed (hcat) for learner in ["ridge_cds_dt", "auto_arima", "ets", "rf_cds_dt"] |
| 140 | + # model = CaretTSPredictor(learner, Dict(:verbose => false)) |
| 141 | + # res = fit_transform!(model, df) |
| 142 | + # DataFrame(learner => res) |
| 143 | + #end |
| 144 | + #@show hcat(tabres, DataFrame(:best => bestres)) |
| 145 | + #print(bmodel.model[:finalmodel]) |
| 146 | + #return nothing |
| 147 | + #hcat(tabres, DataFrame(:best => bestres)) |
| 148 | + ndx1=1:length(df.x1) |
| 149 | + ndx2=(length(ndx1)+1):length(ndx1)+length(bestres) |
| 150 | + (ndx1,df.x1,ndx2,bestres) |
| 151 | +end |
| 152 | + |
| 153 | +end |
| 154 | + |
0 commit comments