Skip to content

Add a test case to test_autoai_output_consumption.py to do fairness mitigation #867

@kiran-kate

Description

@kiran-kate

Add a test case to test_autoai_output_consumption.py covering the following scenario:

  1. Read an output AutoAI pipeline.
  2. Use DisparateImpactRemover on the preprocessing prefix and perform refinement with a choice of classifiers.
  3. Use Hyperopt to choose the best model with the pre-estimator mitigation of step 2.

Here is some code for using the pipeline generated for the German credit dataset:

fairness_info = {
            "protected_attributes": [
                {"feature": "Sex", "reference_group": ['male'], "monitored_group": ['female']},
                {"feature": "Age", "reference_group": [[20,40], [60,90]], "monitored_group": [[41, 59]]}
            ],
            "favorable_labels": ["No Risk"],
            "unfavorable_labels": ["Risk"],
}

prefix = best_pipeline.remove_last().freeze_trainable()

from sklearn.linear_model import LogisticRegression as LR
from sklearn.ensemble import RandomForestClassifier as RF
from lale.operator_wrapper import wrap_imported_operators
from lale.lib.aif360 import DisparateImpactRemover
wrap_imported_operators()

di_remover = DisparateImpactRemover(**fairness_info, preparation=prefix, redact=True)
planned_fairer = di_remover >> (LR | RF)

from lale.lib.aif360 import accuracy_and_disparate_impact
from lale.lib.aif360 import FairStratifiedKFold

combined_scorer = accuracy_and_disparate_impact(**fairness_info)
fair_cv = FairStratifiedKFold(**fairness_info, n_splits=3)

from lale.lib.lale import Hyperopt

import pandas as pd
df = pd.read_csv("german_credit_data_biased_training.csv")
y = df.iloc[:, -1]
X = df.drop(columns=['Risk'])

trained_fairer = planned_fairer.auto_configure(
    X, y, optimizer=Hyperopt, cv=fair_cv, verbose=True,
    max_evals=1, scoring=combined_scorer, best_score=1.0)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions