|
| 1 | +using LinearAlgebra: I, diag |
| 2 | +using TensorAlgebra.MatrixAlgebra: MatrixAlgebra |
| 3 | +using Test: @test, @testset |
| 4 | + |
| 5 | +elts = (Float32, Float64, ComplexF32, ComplexF64) |
| 6 | + |
| 7 | +@testset "elt=$elt" for elt in elts |
| 8 | + A = randn(elt, 3, 2) |
| 9 | + for positive in (false, true) |
| 10 | + for (Q, R) in (MatrixAlgebra.qr(A; positive), MatrixAlgebra.qr(A; full=false, positive)) |
| 11 | + @test A ≈ Q * R |
| 12 | + @test size(Q) == size(A) |
| 13 | + @test size(R) == (size(A, 2), size(A, 2)) |
| 14 | + @test Q' * Q ≈ I |
| 15 | + @test Q * Q' ≉ I |
| 16 | + if positive |
| 17 | + @test all(≥(0), real(diag(R))) |
| 18 | + @test all(≈(0), imag(diag(R))) |
| 19 | + end |
| 20 | + end |
| 21 | + end |
| 22 | + |
| 23 | + A = randn(elt, 3, 2) |
| 24 | + for positive in (false, true) |
| 25 | + Q, R = MatrixAlgebra.qr(A; full=true, positive) |
| 26 | + @test A ≈ Q * R |
| 27 | + @test size(Q) == (size(A, 1), size(A, 1)) |
| 28 | + @test size(R) == size(A) |
| 29 | + @test Q' * Q ≈ I |
| 30 | + @test Q * Q' ≈ I |
| 31 | + if positive |
| 32 | + @test all(≥(0), real(diag(R))) |
| 33 | + @test all(≈(0), imag(diag(R))) |
| 34 | + end |
| 35 | + end |
| 36 | + |
| 37 | + A = randn(elt, 2, 3) |
| 38 | + for positive in (false, true) |
| 39 | + for (L, Q) in (MatrixAlgebra.lq(A; positive), MatrixAlgebra.lq(A; full=false, positive)) |
| 40 | + @test A ≈ L * Q |
| 41 | + @test size(L) == (size(A, 1), size(A, 1)) |
| 42 | + @test size(Q) == size(A) |
| 43 | + @test Q * Q' ≈ I |
| 44 | + @test Q' * Q ≉ I |
| 45 | + if positive |
| 46 | + @test all(≥(0), real(diag(L))) |
| 47 | + @test all(≈(0), imag(diag(L))) |
| 48 | + end |
| 49 | + end |
| 50 | + end |
| 51 | + |
| 52 | + A = randn(elt, 3, 2) |
| 53 | + for positive in (false, true) |
| 54 | + L, Q = MatrixAlgebra.lq(A; full=true, positive) |
| 55 | + @test A ≈ L * Q |
| 56 | + @test size(L) == size(A) |
| 57 | + @test size(Q) == (size(A, 2), size(A, 2)) |
| 58 | + @test Q * Q' ≈ I |
| 59 | + @test Q' * Q ≈ I |
| 60 | + if positive |
| 61 | + @test all(≥(0), real(diag(L))) |
| 62 | + @test all(≈(0), imag(diag(L))) |
| 63 | + end |
| 64 | + end |
| 65 | + |
| 66 | + A = randn(elt, 3, 2) |
| 67 | + for (W, C) in (MatrixAlgebra.orth(A), MatrixAlgebra.orth(A; side=:left)) |
| 68 | + @test A ≈ W * C |
| 69 | + @test size(W) == size(A) |
| 70 | + @test size(C) == (size(A, 2), size(A, 2)) |
| 71 | + @test W' * W ≈ I |
| 72 | + @test W * W' ≉ I |
| 73 | + end |
| 74 | + |
| 75 | + A = randn(elt, 2, 3) |
| 76 | + C, W = MatrixAlgebra.orth(A; side=:right) |
| 77 | + @test A ≈ C * W |
| 78 | + @test size(C) == (size(A, 1), size(A, 1)) |
| 79 | + @test size(W) == size(A) |
| 80 | + @test W * W' ≈ I |
| 81 | + @test W' * W ≉ I |
| 82 | + |
| 83 | + A = randn(elt, 3, 2) |
| 84 | + for (W, P) in (MatrixAlgebra.polar(A), MatrixAlgebra.polar(A; side=:left)) |
| 85 | + @test A ≈ W * P |
| 86 | + @test size(W) == size(A) |
| 87 | + @test size(P) == (size(A, 2), size(A, 2)) |
| 88 | + @test W' * W ≈ I |
| 89 | + @test W * W' ≉ I |
| 90 | + @test isposdef(P) |
| 91 | + end |
| 92 | + |
| 93 | + A = randn(elt, 2, 3) |
| 94 | + P, W = MatrixAlgebra.polar(A; side=:right) |
| 95 | + @test A ≈ P * W |
| 96 | + @test size(P) == (size(A, 1), size(A, 1)) |
| 97 | + @test size(W) == size(A) |
| 98 | + @test W * W' ≈ I |
| 99 | + @test W' * W ≉ I |
| 100 | + @test isposdef(P) |
| 101 | + |
| 102 | + A = randn(elt, 3, 2) |
| 103 | + for (W, C) in (MatrixAlgebra.factorize(A), MatrixAlgebra.factorize(A; orth=:left)) |
| 104 | + @test A ≈ W * C |
| 105 | + @test size(W) == size(A) |
| 106 | + @test size(C) == (size(A, 2), size(A, 2)) |
| 107 | + @test W' * W ≈ I |
| 108 | + @test W * W' ≉ I |
| 109 | + end |
| 110 | + |
| 111 | + A = randn(elt, 2, 3) |
| 112 | + C, W = MatrixAlgebra.factorize(A; orth=:right) |
| 113 | + @test A ≈ C * W |
| 114 | + @test size(C) == (size(A, 1), size(A, 1)) |
| 115 | + @test size(W) == size(A) |
| 116 | + @test W * W' ≈ I |
| 117 | + @test W' * W ≉ I |
| 118 | + |
| 119 | + A = randn(elt, 3, 3) |
| 120 | + D, V = MatrixAlgebra.eigen(A) |
| 121 | + @test A * V ≈ V * D |
| 122 | + @test MatrixAlgebra.eigvals(A) ≈ diag(D) |
| 123 | + |
| 124 | + A = randn(elt, 3, 2) |
| 125 | + for (U, S, V) in (MatrixAlgebra.svd(A), MatrixAlgebra.svd(A; full=false)) |
| 126 | + @test A ≈ U * S * V |
| 127 | + @test size(U) == size(A) |
| 128 | + @test size(S) == (size(A, 2), size(A, 2)) |
| 129 | + @test size(V) == (size(A, 2), size(A, 2)) |
| 130 | + @test U' * U ≈ I |
| 131 | + @test U * U' ≉ I |
| 132 | + @test V * V' ≈ I |
| 133 | + @test V' * V ≈ I |
| 134 | + @test MatrixAlgebra.svdvals(A) ≈ diag(S) |
| 135 | + end |
| 136 | + |
| 137 | + A = randn(elt, 3, 2) |
| 138 | + U, S, V = MatrixAlgebra.svd(A; full=true) |
| 139 | + @test A ≈ U * S * V |
| 140 | + @test size(U) == (size(A, 1), size(A, 1)) |
| 141 | + @test size(S) == size(A) |
| 142 | + @test size(V) == (size(A, 2), size(A, 2)) |
| 143 | + @test U' * U ≈ I |
| 144 | + @test U * U' ≈ I |
| 145 | + @test V * V' ≈ I |
| 146 | + @test V' * V ≈ I |
| 147 | + @test MatrixAlgebra.svdvals(A) ≈ diag(S) |
| 148 | +end |
0 commit comments