|
3 | 3 |
|
4 | 4 | #include "../../../devices/nvidia/nvidia_kernel_common.cuh" |
5 | 5 | #include <cuda_runtime.h> |
| 6 | +#include <cuda_fp16.h> |
| 7 | +#include <type_traits> |
6 | 8 |
|
7 | 9 | namespace op::embedding::nvidia { |
8 | 10 |
|
| 11 | +// Helper function to check memory alignment |
| 12 | +__forceinline__ __device__ bool is_aligned(const void *ptr, size_t alignment) { |
| 13 | + // Use size_t for pointer arithmetic in device code (more compatible) |
| 14 | + return (reinterpret_cast<size_t>(ptr) % alignment == 0); |
| 15 | +} |
| 16 | + |
| 17 | +// Vectorized copy for float type using float4 |
| 18 | +template <typename IndexType> |
| 19 | +__forceinline__ __device__ void copyVectorizedFloat4( |
| 20 | + float *__restrict__ dst, |
| 21 | + const float *__restrict__ src, |
| 22 | + size_t embedding_dim) { |
| 23 | + // Use float4 for vectorized access (16 bytes, 4 floats) |
| 24 | + const float4 *src_vec = reinterpret_cast<const float4 *>(src); |
| 25 | + float4 *dst_vec = reinterpret_cast<float4 *>(dst); |
| 26 | + size_t vec_count = embedding_dim / 4; |
| 27 | + |
| 28 | + // Vectorized copy using __ldg for read-only weight |
| 29 | + for (size_t i = 0; i < vec_count; ++i) { |
| 30 | + dst_vec[i] = __ldg(&src_vec[i]); |
| 31 | + } |
| 32 | + |
| 33 | + // Copy remaining elements |
| 34 | + size_t remaining = embedding_dim % 4; |
| 35 | + if (remaining > 0) { |
| 36 | + size_t offset = vec_count * 4; |
| 37 | + for (size_t i = 0; i < remaining; ++i) { |
| 38 | + dst[offset + i] = __ldg(&src[offset + i]); |
| 39 | + } |
| 40 | + } |
| 41 | +} |
| 42 | + |
| 43 | +// Vectorized copy for float type using float2 (fallback when not aligned to 16 bytes) |
| 44 | +template <typename IndexType> |
| 45 | +__forceinline__ __device__ void copyVectorizedFloat2( |
| 46 | + float *__restrict__ dst, |
| 47 | + const float *__restrict__ src, |
| 48 | + size_t embedding_dim) { |
| 49 | + // Use float2 for vectorized access (8 bytes, 2 floats) |
| 50 | + const float2 *src_vec = reinterpret_cast<const float2 *>(src); |
| 51 | + float2 *dst_vec = reinterpret_cast<float2 *>(dst); |
| 52 | + size_t vec_count = embedding_dim / 2; |
| 53 | + |
| 54 | + // Vectorized copy using __ldg for read-only weight |
| 55 | + for (size_t i = 0; i < vec_count; ++i) { |
| 56 | + dst_vec[i] = __ldg(&src_vec[i]); |
| 57 | + } |
| 58 | + |
| 59 | + // Copy remaining element if odd |
| 60 | + if (embedding_dim % 2 != 0) { |
| 61 | + dst[embedding_dim - 1] = __ldg(&src[embedding_dim - 1]); |
| 62 | + } |
| 63 | +} |
| 64 | + |
| 65 | +// Vectorized copy for half type using half2 |
| 66 | +template <typename IndexType> |
| 67 | +__forceinline__ __device__ void copyVectorizedHalf2( |
| 68 | + half *__restrict__ dst, |
| 69 | + const half *__restrict__ src, |
| 70 | + size_t embedding_dim) { |
| 71 | + // Use half2 for vectorized access (4 bytes, 2 halfs) |
| 72 | + const half2 *src_vec = reinterpret_cast<const half2 *>(src); |
| 73 | + half2 *dst_vec = reinterpret_cast<half2 *>(dst); |
| 74 | + size_t vec_count = embedding_dim / 2; |
| 75 | + |
| 76 | + // Vectorized copy using __ldg for read-only weight |
| 77 | + for (size_t i = 0; i < vec_count; ++i) { |
| 78 | + dst_vec[i] = __ldg(&src_vec[i]); |
| 79 | + } |
| 80 | + |
| 81 | + // Copy remaining element if odd |
| 82 | + if (embedding_dim % 2 != 0) { |
| 83 | + dst[embedding_dim - 1] = __ldg(&src[embedding_dim - 1]); |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +// Vectorized copy for bfloat16 type using bfloat162 |
| 88 | +template <typename IndexType> |
| 89 | +__forceinline__ __device__ void copyVectorizedBFloat162( |
| 90 | + cuda_bfloat16 *__restrict__ dst, |
| 91 | + const cuda_bfloat16 *__restrict__ src, |
| 92 | + size_t embedding_dim) { |
| 93 | + // Use bfloat162 for vectorized access (4 bytes, 2 bfloat16s) |
| 94 | + const cuda_bfloat162 *src_vec = reinterpret_cast<const cuda_bfloat162 *>(src); |
| 95 | + cuda_bfloat162 *dst_vec = reinterpret_cast<cuda_bfloat162 *>(dst); |
| 96 | + size_t vec_count = embedding_dim / 2; |
| 97 | + |
| 98 | + // Vectorized copy using __ldg for read-only weight |
| 99 | + for (size_t i = 0; i < vec_count; ++i) { |
| 100 | + dst_vec[i] = __ldg(&src_vec[i]); |
| 101 | + } |
| 102 | + |
| 103 | + // Copy remaining element if odd |
| 104 | + if (embedding_dim % 2 != 0) { |
| 105 | + dst[embedding_dim - 1] = __ldg(&src[embedding_dim - 1]); |
| 106 | + } |
| 107 | +} |
| 108 | + |
| 109 | +// Scalar copy fallback with __ldg optimization |
| 110 | +template <typename T, typename IndexType> |
| 111 | +__forceinline__ __device__ void copyScalar( |
| 112 | + T *__restrict__ dst, |
| 113 | + const T *__restrict__ src, |
| 114 | + size_t embedding_dim) { |
| 115 | + // Scalar copy with __ldg for read-only weight |
| 116 | + for (size_t i = 0; i < embedding_dim; ++i) { |
| 117 | + dst[i] = __ldg(&src[i]); |
| 118 | + } |
| 119 | +} |
| 120 | + |
9 | 121 | template <typename T, typename IndexType> |
10 | 122 | INFINIOP_CUDA_KERNEL embeddingKernel( |
11 | | - T *output, |
12 | | - const IndexType *indices, |
13 | | - const T *weight, |
| 123 | + T *__restrict__ output, |
| 124 | + const IndexType *__restrict__ indices, |
| 125 | + const T *__restrict__ weight, |
14 | 126 | size_t num_indices, |
15 | 127 | size_t embedding_dim, |
16 | 128 | size_t vocab_size) { |
17 | 129 | // Calculate global thread index |
18 | 130 | size_t idx = blockIdx.x * blockDim.x + threadIdx.x; |
19 | | - |
| 131 | + |
20 | 132 | if (idx < num_indices) { |
21 | 133 | // Get the index value |
22 | | - IndexType index_val = indices[idx]; |
23 | | - |
| 134 | + IndexType index_val = __ldg(&indices[idx]); |
| 135 | + |
24 | 136 | // Bounds check - handle negative indices gracefully |
25 | 137 | if (index_val >= 0 && static_cast<size_t>(index_val) < vocab_size) { |
26 | 138 | // Copy embedding vector from weight to output |
27 | 139 | const T *src = weight + static_cast<size_t>(index_val) * embedding_dim; |
28 | 140 | T *dst = output + idx * embedding_dim; |
29 | | - |
30 | | - // Copy embedding_dim elements |
31 | | - // Use vectorized copy for better performance when possible |
32 | | - size_t i = 0; |
33 | | - // Copy in chunks of 4 for better memory bandwidth utilization |
34 | | - for (; i + 4 <= embedding_dim; i += 4) { |
35 | | - dst[i] = src[i]; |
36 | | - dst[i + 1] = src[i + 1]; |
37 | | - dst[i + 2] = src[i + 2]; |
38 | | - dst[i + 3] = src[i + 3]; |
39 | | - } |
40 | | - // Copy remaining elements |
41 | | - for (; i < embedding_dim; ++i) { |
42 | | - dst[i] = src[i]; |
| 141 | + |
| 142 | + // Choose optimal copy strategy based on type and alignment |
| 143 | + if constexpr (std::is_same_v<T, float>) { |
| 144 | + // Check alignment for float4 (16 bytes) |
| 145 | + bool aligned_16 = is_aligned(src, 16) && is_aligned(dst, 16); |
| 146 | + if (aligned_16 && embedding_dim >= 4 && embedding_dim % 4 == 0) { |
| 147 | + copyVectorizedFloat4<IndexType>(dst, src, embedding_dim); |
| 148 | + } else if (embedding_dim >= 2 && embedding_dim % 2 == 0) { |
| 149 | + // Try float2 if not aligned to 16 bytes |
| 150 | + copyVectorizedFloat2<IndexType>(dst, src, embedding_dim); |
| 151 | + } else { |
| 152 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 153 | + } |
| 154 | + } else if constexpr (std::is_same_v<T, half>) { |
| 155 | + // Use half2 for vectorized access |
| 156 | + if (embedding_dim >= 2 && embedding_dim % 2 == 0) { |
| 157 | + copyVectorizedHalf2<IndexType>(dst, src, embedding_dim); |
| 158 | + } else { |
| 159 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 160 | + } |
| 161 | + } else if constexpr (std::is_same_v<T, cuda_bfloat16>) { |
| 162 | + // Use bfloat162 for vectorized access |
| 163 | + if (embedding_dim >= 2 && embedding_dim % 2 == 0) { |
| 164 | + copyVectorizedBFloat162<IndexType>(dst, src, embedding_dim); |
| 165 | + } else { |
| 166 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 167 | + } |
| 168 | + } else { |
| 169 | + // Fallback to scalar copy with __ldg |
| 170 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
43 | 171 | } |
44 | 172 | } |
45 | 173 | } |
|
0 commit comments