|
| 1 | +#include "../../../../utils.h" |
| 2 | +#include "../../../devices/metax/metax_common.h" |
| 3 | +#include "../../../devices/metax/metax_kernel_common.h" |
| 4 | +#include "../../../tensor.h" |
| 5 | +#include "../cuda/embedding_kernel.cuh" |
| 6 | +#include "embedding_metax.cuh" |
| 7 | + |
| 8 | +template <typename T, typename IndexType> |
| 9 | +INFINIOP_METAX_KERNEL embeddingKernel( |
| 10 | + T *__restrict__ output, |
| 11 | + const IndexType *__restrict__ indices, |
| 12 | + const T *__restrict__ weight, |
| 13 | + size_t num_indices, |
| 14 | + size_t embedding_dim, |
| 15 | + size_t vocab_size) { |
| 16 | + // Calculate global thread index |
| 17 | + size_t idx = blockIdx.x * blockDim.x + threadIdx.x; |
| 18 | + |
| 19 | + if (idx < num_indices) { |
| 20 | + // Get the index value |
| 21 | + IndexType index_val = __ldg(&indices[idx]); |
| 22 | + |
| 23 | + // Bounds check - handle negative indices gracefully |
| 24 | + if (index_val >= 0 && static_cast<size_t>(index_val) < vocab_size) { |
| 25 | + // Copy embedding vector from weight to output |
| 26 | + const T *src = weight + static_cast<size_t>(index_val) * embedding_dim; |
| 27 | + T *dst = output + idx * embedding_dim; |
| 28 | + |
| 29 | + // Choose optimal copy strategy based on type and alignment |
| 30 | + if constexpr (std::is_same_v<T, float>) { |
| 31 | + // Check alignment for float4 (16 bytes) |
| 32 | + bool aligned_16 = is_aligned(src, 16) && is_aligned(dst, 16); |
| 33 | + if (aligned_16 && embedding_dim >= 4 && embedding_dim % 4 == 0) { |
| 34 | + copyVectorizedFloat4<IndexType>(dst, src, embedding_dim); |
| 35 | + } else if (embedding_dim >= 2 && embedding_dim % 2 == 0) { |
| 36 | + // Try float2 if not aligned to 16 bytes |
| 37 | + copyVectorizedFloat2<IndexType>(dst, src, embedding_dim); |
| 38 | + } else { |
| 39 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 40 | + } |
| 41 | + } else if constexpr (std::is_same_v<T, half>) { |
| 42 | + // Use half2 for vectorized access |
| 43 | + if (embedding_dim >= 2 && embedding_dim % 2 == 0) { |
| 44 | + copyVectorizedHalf2<IndexType>(dst, src, embedding_dim); |
| 45 | + } else { |
| 46 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 47 | + } |
| 48 | + } else if constexpr (std::is_same_v<T, cuda_bfloat16>) { |
| 49 | + // Use bfloat162 for vectorized access |
| 50 | + if (embedding_dim >= 2 && embedding_dim % 2 == 0) { |
| 51 | + copyVectorizedBFloat162<IndexType>(dst, src, embedding_dim); |
| 52 | + } else { |
| 53 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 54 | + } |
| 55 | + } else { |
| 56 | + // Fallback to scalar copy with __ldg |
| 57 | + copyScalar<T, IndexType>(dst, src, embedding_dim); |
| 58 | + } |
| 59 | + } |
| 60 | + } |
| 61 | +} |
| 62 | + |
| 63 | +namespace op::embedding::metax { |
| 64 | + |
| 65 | +struct Descriptor::Opaque { |
| 66 | + std::shared_ptr<device::metax::Handle::Internal> internal; |
| 67 | +}; |
| 68 | + |
| 69 | +Descriptor::~Descriptor() { |
| 70 | + delete _opaque; |
| 71 | +} |
| 72 | + |
| 73 | +infiniStatus_t Descriptor::create( |
| 74 | + infiniopHandle_t handle, |
| 75 | + Descriptor **desc_ptr, |
| 76 | + infiniopTensorDescriptor_t output_desc, |
| 77 | + infiniopTensorDescriptor_t input_desc, |
| 78 | + infiniopTensorDescriptor_t weight_desc) { |
| 79 | + |
| 80 | + auto input_shape = input_desc->shape(); |
| 81 | + auto weight_shape = weight_desc->shape(); |
| 82 | + |
| 83 | + // Validate shapes |
| 84 | + CHECK_OR_RETURN(weight_shape.size() == 2, INFINI_STATUS_BAD_TENSOR_SHAPE); |
| 85 | + CHECK_OR_RETURN(output_desc->shape().size() == input_shape.size() + 1, INFINI_STATUS_BAD_TENSOR_SHAPE); |
| 86 | + |
| 87 | + // Check output shape matches input shape + embedding_dim |
| 88 | + auto output_shape = output_desc->shape(); |
| 89 | + size_t embedding_dim = weight_shape[1]; |
| 90 | + CHECK_OR_RETURN(output_shape.back() == embedding_dim, INFINI_STATUS_BAD_TENSOR_SHAPE); |
| 91 | + |
| 92 | + for (size_t i = 0; i < input_shape.size(); ++i) { |
| 93 | + CHECK_OR_RETURN(output_shape[i] == input_shape[i], INFINI_STATUS_BAD_TENSOR_SHAPE); |
| 94 | + } |
| 95 | + |
| 96 | + // Validate dtypes |
| 97 | + auto input_dtype = input_desc->dtype(); |
| 98 | + auto weight_dtype = weight_desc->dtype(); |
| 99 | + CHECK_OR_RETURN(input_dtype == INFINI_DTYPE_I32 || input_dtype == INFINI_DTYPE_I64, |
| 100 | + INFINI_STATUS_BAD_TENSOR_DTYPE); |
| 101 | + CHECK_OR_RETURN(weight_dtype == INFINI_DTYPE_F32 || weight_dtype == INFINI_DTYPE_F16 || |
| 102 | + weight_dtype == INFINI_DTYPE_BF16, INFINI_STATUS_BAD_TENSOR_DTYPE); |
| 103 | + CHECK_OR_RETURN(output_desc->dtype() == weight_dtype, INFINI_STATUS_BAD_TENSOR_DTYPE); |
| 104 | + |
| 105 | + // Calculate number of indices (supporting batch dimension) |
| 106 | + size_t num_indices = 1; |
| 107 | + for (auto dim : input_shape) { |
| 108 | + num_indices *= dim; |
| 109 | + } |
| 110 | + |
| 111 | + size_t vocab_size = weight_shape[0]; |
| 112 | + |
| 113 | + *desc_ptr = new Descriptor( |
| 114 | + num_indices, |
| 115 | + embedding_dim, |
| 116 | + vocab_size, |
| 117 | + input_dtype, |
| 118 | + weight_dtype, |
| 119 | + new Opaque{reinterpret_cast<device::metax::Handle *>(handle)->internal()}, |
| 120 | + handle->device, |
| 121 | + handle->device_id); |
| 122 | + |
| 123 | + return INFINI_STATUS_SUCCESS; |
| 124 | +} |
| 125 | + |
| 126 | +infiniStatus_t Descriptor::calculate( |
| 127 | + void *output, |
| 128 | + const void *input, |
| 129 | + const void *weight, |
| 130 | + void *stream) const { |
| 131 | + |
| 132 | + if (_num_indices == 0) { |
| 133 | + return INFINI_STATUS_SUCCESS; |
| 134 | + } |
| 135 | + |
| 136 | + auto hc_stream = reinterpret_cast<hcStream_t>(stream); |
| 137 | + |
| 138 | + // Dynamic block size optimization based on embedding_dim for Metax platform |
| 139 | + size_t block_size = 256; // Default block size for Metax |
| 140 | + if (_embedding_dim <= 64) { |
| 141 | + block_size = 512; // Small embedding_dim: use larger block for better occupancy |
| 142 | + } else if (_embedding_dim >= 1024) { |
| 143 | + block_size = 128; // Large embedding_dim: use smaller block to reduce register pressure |
| 144 | + } |
| 145 | + |
| 146 | + size_t grid_size = (_num_indices + block_size - 1) / block_size; |
| 147 | + |
| 148 | + // Launch kernel based on dtypes for Metax platform |
| 149 | + if (_input_dtype == INFINI_DTYPE_I32) { |
| 150 | + const int32_t *indices_ptr = reinterpret_cast<const int32_t *>(input); |
| 151 | + |
| 152 | + if (_weight_dtype == INFINI_DTYPE_F32) { |
| 153 | + embeddingKernel<float, int32_t><<<grid_size, block_size, 0, hc_stream>>>( |
| 154 | + reinterpret_cast<float *>(output), |
| 155 | + indices_ptr, |
| 156 | + reinterpret_cast<const float *>(weight), |
| 157 | + _num_indices, |
| 158 | + _embedding_dim, |
| 159 | + _vocab_size); |
| 160 | + } else if (_weight_dtype == INFINI_DTYPE_F16) { |
| 161 | + embeddingKernel<half, int32_t><<<grid_size, block_size, 0, hc_stream>>>( |
| 162 | + reinterpret_cast<half *>(output), |
| 163 | + indices_ptr, |
| 164 | + reinterpret_cast<const half *>(weight), |
| 165 | + _num_indices, |
| 166 | + _embedding_dim, |
| 167 | + _vocab_size); |
| 168 | + } else if (_weight_dtype == INFINI_DTYPE_BF16) { |
| 169 | + // Use Metax's bfloat16 type |
| 170 | + embeddingKernel<__hpcc_bfloat16, int32_t><<<grid_size, block_size, 0, hc_stream>>>( |
| 171 | + reinterpret_cast<__hpcc_bfloat16 *>(output), |
| 172 | + indices_ptr, |
| 173 | + reinterpret_cast<const __hpcc_bfloat16 *>(weight), |
| 174 | + _num_indices, |
| 175 | + _embedding_dim, |
| 176 | + _vocab_size); |
| 177 | + } else { |
| 178 | + return INFINI_STATUS_BAD_TENSOR_DTYPE; |
| 179 | + } |
| 180 | + } else if (_input_dtype == INFINI_DTYPE_I64) { |
| 181 | + const int64_t *indices_ptr = reinterpret_cast<const int64_t *>(input); |
| 182 | + |
| 183 | + if (_weight_dtype == INFINI_DTYPE_F32) { |
| 184 | + embeddingKernel<float, int64_t><<<grid_size, block_size, 0, hc_stream>>>( |
| 185 | + reinterpret_cast<float *>(output), |
| 186 | + indices_ptr, |
| 187 | + reinterpret_cast<const float *>(weight), |
| 188 | + _num_indices, |
| 189 | + _embedding_dim, |
| 190 | + _vocab_size); |
| 191 | + } else if (_weight_dtype == INFINI_DTYPE_F16) { |
| 192 | + embeddingKernel<half, int64_t><<<grid_size, block_size, 0, hc_stream>>>( |
| 193 | + reinterpret_cast<half *>(output), |
| 194 | + indices_ptr, |
| 195 | + reinterpret_cast<const half *>(weight), |
| 196 | + _num_indices, |
| 197 | + _embedding_dim, |
| 198 | + _vocab_size); |
| 199 | + } else if (_weight_dtype == INFINI_DTYPE_BF16) { |
| 200 | + embeddingKernel<__hpcc_bfloat16, int64_t><<<grid_size, block_size, 0, hc_stream>>>( |
| 201 | + reinterpret_cast<__hpcc_bfloat16 *>(output), |
| 202 | + indices_ptr, |
| 203 | + reinterpret_cast<const __hpcc_bfloat16 *>(weight), |
| 204 | + _num_indices, |
| 205 | + _embedding_dim, |
| 206 | + _vocab_size); |
| 207 | + } else { |
| 208 | + return INFINI_STATUS_BAD_TENSOR_DTYPE; |
| 209 | + } |
| 210 | + } else { |
| 211 | + return INFINI_STATUS_BAD_TENSOR_DTYPE; |
| 212 | + } |
| 213 | + |
| 214 | + return INFINI_STATUS_SUCCESS; |
| 215 | +} |
| 216 | + |
| 217 | +} // namespace op::embedding::metax |
0 commit comments