@@ -67,7 +67,6 @@ DEFINE_bool(sequence_parallel, false, "Whether to enable Sequence Parallel");
6767DEFINE_uint32 (
6868 pipeline_parallel, 1 ,
6969 " Pipeline Parallel world size, will always use device=cuda and use all cuda visible devices when set to true" );
70- DEFINE_uint32 (num_microbatches, 4 , " the num of microbatches in pipeline parallelism" );
7170
7271// precision
7372DEFINE_string (dtype, " float32" , " precision used in training (float32/bfloat16)" );
@@ -148,14 +147,16 @@ void Train(const nn::parallel::Rank &rank) {
148147 pp_pg = ProcessGroupFactory::Instance ()->GetOrCreate (
149148 GetPipelineParallelProcessGroupName (rank.thread_rank ()), GetPipelineParallelGroupRanks (pp_world_size));
150149 pp_rank = pp_pg->GetGroupRank (rank.thread_rank ());
150+
151+ nn::parallel::pp_rank = pp_rank;
151152 }
152153 } else {
153154 device = FLAGS_device == kDeviceCPU ? DeviceManager::Instance ()->GetDefaultDevice ()
154155 : DeviceManager::Instance ()->GetDevice (DeviceType::kCUDA , 0 );
155156 }
156157
157158 // calculate gradient accumulation from the desired total batch size and the current run configuration
158- const auto tokens_per_fwdbwd = FLAGS_batch_size * FLAGS_sequence_length * ( ddp_world_size * pp_world_size) ;
159+ const auto tokens_per_fwdbwd = FLAGS_batch_size * FLAGS_sequence_length * ddp_world_size;
159160 CHECK_EQ (FLAGS_total_batch_size % tokens_per_fwdbwd, 0 );
160161 const auto grad_accum_steps = FLAGS_total_batch_size / tokens_per_fwdbwd;
161162 LOG (INFO) << " total desired batch size: " << FLAGS_total_batch_size
@@ -197,16 +198,9 @@ void Train(const nn::parallel::Rank &rank) {
197198 model = std::make_shared<DistributedDataParallel>(model, rank.thread_rank ());
198199 }
199200
200- std::unique_ptr<DataLoader> train_loader;
201- if (pp_world_size > 1 ) {
202- train_loader = std::make_unique<DataLoader>(
203- std::make_shared<TinyShakespeareDataset>(FLAGS_input_bin, FLAGS_sequence_length),
204- FLAGS_batch_size * pp_world_size);
205- } else {
206- train_loader = std::make_unique<DistributedDataLoader>(
207- std::make_shared<TinyShakespeareDataset>(FLAGS_input_bin, FLAGS_sequence_length), FLAGS_batch_size,
208- ddp_rank, ddp_world_size);
209- }
201+ auto num_microbatches = FLAGS_total_batch_size / (FLAGS_batch_size * FLAGS_sequence_length * ddp_world_size);
202+ DistributedDataLoader train_loader (std::make_shared<TinyShakespeareDataset>(FLAGS_input_bin, FLAGS_sequence_length),
203+ FLAGS_batch_size * num_microbatches, ddp_rank, ddp_world_size);
210204
211205 std::optional<DistributedDataLoader> val_loader = std::nullopt ;
212206 if (!FLAGS_input_val_bin.empty ()) {
@@ -231,7 +225,7 @@ void Train(const nn::parallel::Rank &rank) {
231225 };
232226 auto optimizer = optimizer_factory (model->Parameters ());
233227
234- auto train_iter = train_loader-> begin ();
228+ auto train_iter = train_loader. begin ();
235229 std::shared_ptr<nn::Module> loss_fn
236230 = (tp_world_size > 1 ) ? std::static_pointer_cast<nn::Module>(
237231 std::make_shared<VocabParallelCrossEntropyLoss>(model_config.original_vocab_size ))
@@ -240,13 +234,9 @@ void Train(const nn::parallel::Rank &rank) {
240234 LOG (INFO) << " Rank " << rank.thread_rank () << " : start training" ;
241235
242236 if (pp_world_size > 1 ) {
243- CHECK_EQ ((FLAGS_batch_size * pp_world_size) % FLAGS_num_microbatches, 0 )
244- << " FLAGS_batch_size (" << (FLAGS_batch_size * pp_world_size)
245- << " ) must be divisible by FLAGS_num_microbatches (" << FLAGS_num_microbatches << " )" ;
246- auto shapes = std::vector<std::vector<int64_t >>{{(FLAGS_batch_size * pp_world_size) / FLAGS_num_microbatches,
247- FLAGS_sequence_length, model->GetConfig ()[" n_embd" ]}};
237+ auto shapes = std::vector<std::vector<int64_t >>{{FLAGS_batch_size, FLAGS_sequence_length, model_config.n_embd }};
248238
249- model = std::make_shared<nn::parallel::PipelineParallel>(model, pp_world_size, FLAGS_num_microbatches , shapes,
239+ model = std::make_shared<nn::parallel::PipelineParallel>(model, pp_world_size, num_microbatches , shapes,
250240 pp_rank, optimizer_factory);
251241 }
252242
@@ -274,65 +264,68 @@ void Train(const nn::parallel::Rank &rank) {
274264 break ;
275265 }
276266
267+ float lossf = 0 .0f ;
277268 // model->Train();
278269 if (pp_world_size == 1 ) {
279270 optimizer->ZeroGrad ();
280- }
281- // if we are trying to overfit a single batch, we reset the loader here
282- if (FLAGS_overfit_single_batch) {
283- // train_loader.Reset();
284- }
285- float lossf = 0 . 0f ;
271+
272+ // if we are trying to overfit a single batch, we reset the loader here
273+ if (FLAGS_overfit_single_batch) {
274+ // train_loader.Reset();
275+ }
276+
286277#ifdef PROFILE_MODE
287- Profiler::Instance ().SetTag (" Step_" + std::to_string (step));
278+ Profiler::Instance ().SetTag (" Step_" + std::to_string (step));
288279#endif
289- for (int micro_step = 0 ; micro_step < grad_accum_steps; ++micro_step) {
290- // enable autocast for the current step
291- infini_train::AutocastGuard autocast_guard (device->Type (), dtype);
280+ for (int micro_step = 0 ; micro_step < grad_accum_steps; ++micro_step) {
281+ // enable autocast for the current step
282+ infini_train::AutocastGuard autocast_guard (device->Type (), dtype);
283+
284+ // (bs, seq_len), (bs, seq_len)
285+ auto [x, y] = *train_iter;
286+ // if we are trying to overfit a single batch, we reset the loader here by commenting out the line below
287+ // TODO(dcj): support dataloader.reset() later
288+ ++train_iter;
289+ x = std::make_shared<Tensor>(x->To (device));
290+ y = std::make_shared<Tensor>(y->To (device));
291+
292+ LOG (INFO) << " Rank " << rank.thread_rank () << " : start forward" ;
293+ // (bs, seq_len, vocab_size)
294+ auto logits = model->Forward ({x, y})[0 ];
295+ LOG (INFO) << " Rank " << rank.thread_rank () << " : finish model forward, start loss forward" ;
296+ auto loss = loss_fn->Forward ({logits, y})[0 ];
297+ loss = loss / grad_accum_steps;
298+
299+ // disable autocast for the current step (backward is not under autocast)
300+ autocast_guard.Disable ();
301+
302+ LOG (INFO) << " Rank " << rank.thread_rank () << " : finish loss forward" ;
303+ if (ddp_world_size > 1 ) {
304+ function::AllReduce (loss, function::ReduceOpType::kAvg );
305+ }
306+ auto loss_cpu = loss->To (DeviceManager::Instance ()->GetDefaultDevice ());
307+ lossf += static_cast <const float *>(loss_cpu.DataPtr ())[0 ];
308+ LOG (INFO) << " Rank " << rank.thread_rank () << " : start backward" ;
309+ loss->Backward ();
310+ LOG (INFO) << " Rank " << rank.thread_rank () << " : finish backward" ;
311+ }
292312
293- // (bs, seq_len), (bs, seq_len)
313+ optimizer->Step ();
314+ } else {
294315 auto [x, y] = *train_iter;
295316 // if we are trying to overfit a single batch, we reset the loader here by commenting out the line below
296317 // TODO(dcj): support dataloader.reset() later
297318 ++train_iter;
298319 x = std::make_shared<Tensor>(x->To (device));
299320 y = std::make_shared<Tensor>(y->To (device));
300321
301- if (pp_world_size > 1 ) {
302- lossf = model->TrainStep ({x}, {y}, loss_fn);
303-
304- auto loss_tensor = std::make_shared<Tensor>(std::vector<int64_t >{}, DataType::kFLOAT32 );
305- static_cast <float *>(loss_tensor->DataPtr ())[0 ] = lossf;
306- auto loss_device_ptr = std::make_shared<Tensor>(loss_tensor->To (device));
307- function::AllReduce (loss_device_ptr, function::ReduceOpType::kMax );
308- auto loss_copy = loss_device_ptr->To (DeviceManager::Instance ()->GetDefaultDevice ());
309- lossf = static_cast <const float *>(loss_copy.DataPtr ())[0 ];
310- continue ;
311- }
312-
313- LOG (INFO) << " Rank " << rank.thread_rank () << " : start forward" ;
314- // (bs, seq_len, vocab_size)
315- auto logits = model->Forward ({x, y})[0 ];
316- LOG (INFO) << " Rank " << rank.thread_rank () << " : finish model forward, start loss forward" ;
317- auto loss = loss_fn->Forward ({logits, y})[0 ];
318- loss = loss / grad_accum_steps;
319-
320- // disable autocast for the current step (backward is not under autocast)
321- autocast_guard.Disable ();
322-
323- LOG (INFO) << " Rank " << rank.thread_rank () << " : finish loss forward" ;
324- if (ddp_world_size > 1 ) {
325- function::AllReduce (loss, function::ReduceOpType::kAvg );
326- }
327- auto loss_cpu = loss->To (DeviceManager::Instance ()->GetDefaultDevice ());
328- lossf += static_cast <const float *>(loss_cpu.DataPtr ())[0 ];
329- LOG (INFO) << " Rank " << rank.thread_rank () << " : start backward" ;
330- loss->Backward ();
331- LOG (INFO) << " Rank " << rank.thread_rank () << " : finish backward" ;
332- }
333-
334- if (pp_world_size == 1 ) {
335- optimizer->Step ();
322+ lossf = model->TrainStep ({x}, {y}, loss_fn);
323+ auto loss_tensor = std::make_shared<Tensor>(std::vector<int64_t >{}, DataType::kFLOAT32 );
324+ static_cast <float *>(loss_tensor->DataPtr ())[0 ] = lossf;
325+ auto loss_device_ptr = std::make_shared<Tensor>(loss_tensor->To (device));
326+ function::AllReduce (loss_device_ptr, function::ReduceOpType::kMax );
327+ auto loss_copy = loss_device_ptr->To (DeviceManager::Instance ()->GetDefaultDevice ());
328+ lossf = static_cast <const float *>(loss_copy.DataPtr ())[0 ];
336329 }
337330 const auto iter_end = std::chrono::high_resolution_clock::now ();
338331 const double duration_us = std::chrono::duration<double , std::micro>(iter_end - iter_start).count ();
0 commit comments