Skip to content

Commit c9d9b2e

Browse files
committed
Update README.md
1 parent 80a74c1 commit c9d9b2e

File tree

1 file changed

+5
-13
lines changed

1 file changed

+5
-13
lines changed

README.md

Lines changed: 5 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -39,9 +39,7 @@ of it in context of your methodology (yes, minimal optimal set of features
3939
by definition depends on your classifier choice).
4040

4141

42-
## Versions ##
43-
44-
### BorutaPy ###
42+
## What's different in BorutaPy? ##
4543

4644
It is the original R package recoded in Python with a few added extra features.
4745
Some improvements include:
@@ -98,11 +96,7 @@ deviding the p-value threshold with the current iteration index.
9896
If this two step correction is not required, the two_step parameter has to be
9997
set to False, then (with perc=100) BorutaPy behaves exactly as the R version.
10098

101-
* * *
102-
103-
## Docs ##
104-
105-
### Parameters ###
99+
## Parameters ##
106100

107101
__estimator__ : object
108102
> A supervised learning estimator, with a 'fit' method that returns the
@@ -137,9 +131,8 @@ __max_iter__ : int, default = 100
137131
__verbose__ : int, default=0
138132
> Controls verbosity of output.
139133
140-
* * *
141134

142-
### Attributes ###
135+
## Attributes ##
143136

144137
**n_features_** : int
145138
> The number of selected features.
@@ -157,9 +150,8 @@ __verbose__ : int, default=0
157150
> best) features are assigned rank 1 and tentative features are assigned
158151
> rank 2.
159152
160-
* * *
161153

162-
### Examples ###
154+
## Examples ##
163155

164156
import pandas as pd
165157
from sklearn.ensemble import RandomForestClassifier
@@ -190,6 +182,6 @@ __verbose__ : int, default=0
190182
X_filtered = feat_selector.transform(X)
191183

192184

193-
### References ###
185+
## References ##
194186

195187
1. Kursa M., Rudnicki W., "Feature Selection with the Boruta Package" Journal of Statistical Software, Vol. 36, Issue 11, Sep 2010

0 commit comments

Comments
 (0)