@@ -39,9 +39,7 @@ of it in context of your methodology (yes, minimal optimal set of features
39
39
by definition depends on your classifier choice).
40
40
41
41
42
- ## Versions ##
43
-
44
- ### BorutaPy ###
42
+ ## What's different in BorutaPy? ##
45
43
46
44
It is the original R package recoded in Python with a few added extra features.
47
45
Some improvements include:
@@ -98,11 +96,7 @@ deviding the p-value threshold with the current iteration index.
98
96
If this two step correction is not required, the two_step parameter has to be
99
97
set to False, then (with perc=100) BorutaPy behaves exactly as the R version.
100
98
101
- * * *
102
-
103
- ## Docs ##
104
-
105
- ### Parameters ###
99
+ ## Parameters ##
106
100
107
101
__ estimator__ : object
108
102
> A supervised learning estimator, with a 'fit' method that returns the
@@ -137,9 +131,8 @@ __max_iter__ : int, default = 100
137
131
__ verbose__ : int, default=0
138
132
> Controls verbosity of output.
139
133
140
- * * *
141
134
142
- ### Attributes # ##
135
+ ## Attributes ##
143
136
144
137
** n_features_ ** : int
145
138
> The number of selected features.
@@ -157,9 +150,8 @@ __verbose__ : int, default=0
157
150
> best) features are assigned rank 1 and tentative features are assigned
158
151
> rank 2.
159
152
160
- * * *
161
153
162
- ### Examples # ##
154
+ ## Examples ##
163
155
164
156
import pandas as pd
165
157
from sklearn.ensemble import RandomForestClassifier
@@ -190,6 +182,6 @@ __verbose__ : int, default=0
190
182
X_filtered = feat_selector.transform(X)
191
183
192
184
193
- ### References # ##
185
+ ## References ##
194
186
195
187
1 . Kursa M., Rudnicki W., "Feature Selection with the Boruta Package" Journal of Statistical Software, Vol. 36, Issue 11, Sep 2010
0 commit comments