@@ -63,13 +63,12 @@ def date_to_str(dt: datetime) -> Text:
6363 import datatime
6464 time_now = datetime.datetime.now()
6565
66- print(time_now)
67- >>> 2021-04-29 11:01:29.909340
68- print(type(time_now))
69- >>> <class 'datetime.datetime'>
70-
71- print(date_to_str(time_now), type(time_now))
72- >>> 2021-04-29 <class 'str'>
66+ >>> print(time_now)
67+ 2021-04-29 11:01:29.909340
68+ >>> print(type(time_now))
69+ <class 'datetime.datetime'>
70+ >>> print(date_to_str(time_now), type(time_now))
71+ 2021-04-29 <class 'str'>
7372
7473 """
7574 return dt .strftime ('%Y-%m-%d' )
@@ -94,12 +93,12 @@ def str_to_datetime(dt_str: Text) -> datetime:
9493 time_1 = '2020-06-29'
9594 time_2 = '2020-06-29 12:45:59'
9695
97- print(type(time_1), type(time_2))
98- >>> <class 'str'> <class 'str'>
99- print( str_to_datetime(time_1), type(str_to_datetime(time_1)))
100- >>> 2020-06-29 00:00:00 <class 'datetime.datetime'>
101- print(str_to_datetime(time_2), type(str_to_datetime(time_2)))
102- >>> 2020-06-29 12:45:59 <class 'datetime.datetime'>
96+ >>> print(type(time_1), type(time_2))
97+ <class 'str'> <class 'str'>
98+ >>> print( str_to_datetime(time_1), type(str_to_datetime(time_1)))
99+ 2020-06-29 00:00:00 <class 'datetime.datetime'>
100+ >>> print(str_to_datetime(time_2), type(str_to_datetime(time_2)))
101+ 2020-06-29 12:45:59 <class 'datetime.datetime'>
103102
104103
105104 """
@@ -128,13 +127,13 @@ def datetime_to_str(dt: datetime) -> Text:
128127 import datetime
129128 time_now = datetime.datetime.now()
130129
131- print(time_now)
132- >>> 2021-04-29 14:15:29.708113
133- print(type(time_now))
134- >>> <class 'datetime.datetime'>
130+ >>> print(time_now)
131+ 2021-04-29 14:15:29.708113
132+ >>> print(type(time_now))
133+ <class 'datetime.datetime'>
135134
136- print(data_to_str(time_now), type(data_to_str(time_now)))
137- >>> 2021-04-29 14:15:29 <class 'str' >
135+ >>> print(data_to_str(time_now), type(data_to_str(time_now)))
136+ 2021-04-29 14:15:29 <class 'str' >
138137
139138 """
140139 return dt .strftime ('%Y-%m-%d %H:%M:%S' )
@@ -161,10 +160,10 @@ def datetime_to_min(dt: datetime) -> int:
161160 import datetime
162161
163162 time_now = datetime.datetime.now()
164- print(type(to_min(time_now)))
165- >>> <class 'int'>
166- to_min(time_now)
167- >>> 26996497
163+ >>> print(type(to_min(time_now)))
164+ <class 'int'>
165+ >>> to_min(time_now)
166+ 26996497
168167
169168 """
170169 # get an integer time slot from a datetime
@@ -191,8 +190,8 @@ def min_to_datetime(minutes: int) -> datetime:
191190
192191 Example
193192 -------
194- print(min_to_datetime(26996497), type(min_to_datetime(26996497)))
195- >>> 2021-04-30 13:37:00 <class 'datetime.datetime'>
193+ >>> print(min_to_datetime(26996497), type(min_to_datetime(26996497)))
194+ 2021-04-30 13:37:00 <class 'datetime.datetime'>
196195
197196 """
198197 return datetime .utcfromtimestamp (minutes * 60 )
@@ -219,10 +218,10 @@ def to_day_of_week_int(dt: datetime) -> int:
219218 monday = str_to_datetime('2021-05-3 12:00:01')
220219 friday = str_to_datetime('2021-05-7 12:00:01')
221220
222- print(to_day_of_week_int(monday), type(to_day_of_week_int(monday)))
223- >>> 0 <class 'int'>
224- print(to_day_of_week_int(friday), type(to_day_of_week_int(friday)))
225- >>> 4 <class 'int'>
221+ >>> print(to_day_of_week_int(monday), type(to_day_of_week_int(monday)))
222+ 0 <class 'int'>
223+ >>> print(to_day_of_week_int(friday), type(to_day_of_week_int(friday)))
224+ 4 <class 'int'>
226225
227226 """
228227 return dt .weekday ()
@@ -260,10 +259,14 @@ def working_day(
260259 next_day = str_to_datetime('2021-09-8 12:00:01')
261260 # In Brazil this day is a Wednesday and isn't a holiday
262261
263- print(working_day(independence_day, 'BR'), type(working_day(independence_day, 'BR')))
264- >>> False <class 'bool'>
265- print(working_day(next_day, 'BR'), type(working_day(next_day, 'BR')))
266- >>> True <class 'bool'>
262+ >>> print(working_day(independence_day, 'BR'))
263+ False
264+ >>> print(type(working_day(independence_day, 'BR')))
265+ <class 'bool'>
266+ >>> print(working_day(next_day, 'BR'))
267+ True
268+ >>> print(type(working_day(next_day, 'BR')))
269+ <class 'bool'>
267270
268271 References
269272 ----------
@@ -462,10 +465,10 @@ def elapsed_time_dt(start_time: datetime) -> int:
462465 start_time_1 = datetime(2020, 6, 29, 0, 0)
463466 start_time_2 = str_to_datetime('2020-06-29 12:45:59')
464467
465- print(elapsed_time_dt(start_time_1))
466- >>> 26411808666
467- print(elapsed_time_dt(start_time_2))
468- >>> 26365849667
468+ >>> print(elapsed_time_dt(start_time_1))
469+ 26411808666
470+ >>> print(elapsed_time_dt(start_time_2))
471+ 26365849667
469472 """
470473 return diff_time (start_time , datetime .now ())
471474
@@ -496,10 +499,10 @@ def diff_time(start_time: datetime, end_time: datetime) -> int:
496499 start_time_1 = datetime(2020, 6, 29, 0, 0)
497500 start_time_2 = str_to_datetime('2020-06-29 12:45:59')
498501
499- print(diff_time(start_time_1, time_now))
500- >>> 26411808665
501- print(diff_time(start_time_2, time_now))
502- >>> 26365849665
502+ >>> print(diff_time(start_time_1, time_now))
503+ 26411808665
504+ >>> print(diff_time(start_time_2, time_now))
505+ 26365849665
503506 """
504507 return int ((end_time - start_time ).total_seconds () * 1000 )
505508
@@ -588,16 +591,16 @@ def generate_time_statistics(
588591
589592 Example
590593 -------
591- df
592- >>> local_label prev_local time_to_prev id
594+ >>> df
595+ local_label prev_local time_to_prev id
593596 0 house None NaN 1
594597 1 market house 720.0 1
595598 2 market market 5.0 1
596599 3 market market 1.0 1
597600 4 school market 844.0 1
598601
599- generate_time_statistics(df)
600- >>> local_label prev_local mean std min max sum count
602+ >>> generate_time_statistics(df)
603+ local_label prev_local mean std min max sum count
601604 0 house market 844.0 0.000000 844.0 844.0 844.0 1
602605 1 market house 720.0 0.000000 720.0 720.0 720.0 1
603606 2 market market 3.0 2.828427 1.0 5.0 6.0 2
@@ -636,12 +639,12 @@ def _calc_time_threshold(seg_mean: float, seg_std: float) -> float:
636639
637640 Examples
638641 --------
639- print(_calc_time_threshold(12.3,2.1))
640- >>> 14.4
641- print(_calc_time_threshold(1,1.5))
642- >>> 2.5
643- print(_calc_time_threshold(-2,2))
644- >>> 0.0
642+ >>> print(_calc_time_threshold(12.3,2.1))
643+ 14.4
644+ >>> print(_calc_time_threshold(1,1.5))
645+ 2.5
646+ >>> print(_calc_time_threshold(-2,2))
647+ 0.0
645648
646649 """
647650 threshold = seg_std + seg_mean
@@ -682,23 +685,23 @@ def threshold_time_statistics(
682685 -------
683686 from pymove.utils.datetime import generate_time_statistics, _calc_time_threshold
684687
685- df
686- >>> local_label prev_local time_to_prev id
688+ >>> df
689+ local_label prev_local time_to_prev id
687690 0 house None NaN 1
688691 1 market house 720.0 1
689692 2 market market 5.0 1
690693 3 market market 1.0 1
691694 4 school market 844.0 1
692695
693- statistics = generate_time_statistics(df)
694- statistics
695- >>> local_label prev_local mean std min max sum count
696+ >>> statistics = generate_time_statistics(df)
697+ >>> statistics
698+ local_label prev_local mean std min max sum count
696699 0 house market 844.0 0.000000 844.0 844.0 844.0 1
697700 1 market house 720.0 0.000000 720.0 720.0 720.0 1
698701 2 market market 3.0 2.828427 1.0 5.0 6.0 2
699702
700- threshold_time_statistics(statistics)
701- >>> local_label prev_local mean std min max sum count
703+ >>> threshold_time_statistics(statistics)
704+ local_label prev_local mean std min max sum count
702705 0 house market 844.0 0.000000 844.0 844.0 844.0 1
703706 1 market house 720.0 0.000000 720.0 720.0 720.0 1
704707 2 market market 3.0 2.828427 1.0 5.0 6.0 2
0 commit comments