@@ -169,15 +169,15 @@ Requirements: Anaconda Python distribution installed and accessible
169169 you want to call your environment, and replace ` x.x ` with the Python version
170170 you wish to use. (To see a list of available python versions first,
171171 type conda search "^python$" and press enter.)
172- - ` conda create -n <env_name> python=x.x `
172+ - `` conda create -n <env_name> python=x.x ` `
173173
174- - Press y to proceed. This will install the Python version and all the
174+ - ` Press y to proceed. This will install the Python version and all the`
175175 associated anaconda packaged libraries at ` path_to_your_anaconda_location/anaconda/envs/env_name `
176176
1771772 . Activate your virtual environment. To activate or switch into your
178178 virtual environment, simply type the following where yourenvname is the
179179 name you gave to your environment at creation.
180- - ` conda activate <env_name> `
180+ - `` conda activate <env_name> ` `
181181
1821823 . Now install the package from either ` conda ` , ` pip ` or ` github `
183183
@@ -196,19 +196,19 @@ Requirements: Anaconda Python distribution installed and accessible
196196## [ Github] ( https://github.com/InsightLab/PyMove ) installation
197197
1981981 . Clone this repository
199- - ` git clone https://github.com/InsightLab/PyMove `
199+ - `` git clone https://github.com/InsightLab/PyMove ` `
200200
2012012 . Switch to folder PyMove
202- - ` cd PyMove `
202+ - `` cd PyMove ` `
203203
2042043 . Switch to a new branch
205- - ` git checkout -b developer `
205+ - `` git checkout -b developer ` `
206206
2072074 . Make a pull of branch
208- - ` git pull origin developer `
208+ - `` git pull origin developer ` `
209209
2102105 . Install pymove in developer mode
211- - ` make dev `
211+ - `` make dev ` `
212212
213213### For windows users
214214
@@ -219,7 +219,70 @@ If you installed from `pip` or `github`, you may encounter an error related to
219219
220220## Examples
221221
222- You can access examples of how to use PyMove [ here] ( https://github.com/InsightLab/PyMove/tree/master/examples )
222+ You can see examples of how to use PyMove [ here] ( https://github.com/InsightLab/PyMove/tree/master/notebooks )
223+
224+ ---
225+
226+ ## Mapping PyMove methods with the Paradigms of Trajectory Data Mining
227+
228+ ![ ] ( .mapping.png )
229+ [ ZHENG 2015] ( https://www.microsoft.com/en-us/research/publication/trajectory-data-mining-an-overview/ ) .
230+
231+ - 1: ** Spatial Trajectories** &rarr ; ` pymove.core `
232+ - ` MoveDataFrame `
233+ - ` DiscreteMoveDataFrame `
234+ - 2: ** Stay Point Detection** &rarr ; ` pymove.preprocessing.stay_point_detection `
235+ - ` create_or_update_move_stop_by_dist_time `
236+ - ` create_or_update_move_and_stop_by_radius `
237+ - 3: ** Map-Matching** &rarr ; ` pymove-osmnx `
238+ - 4: ** Noise Filtering** &rarr ; ` pymove.preprocessing.filters `
239+ - ` by_bbox `
240+ - ` by_datetime `
241+ - ` by_label `
242+ - ` by_id `
243+ - ` by_tid `
244+ - ` clean_consecutive_duplicates `
245+ - ` clean_gps_jumps_by_distance `
246+ - ` clean_gps_nearby_points_by_distances `
247+ - ` clean_gps_nearby_points_by_speed `
248+ - ` clean_gps_speed_max_radius `
249+ - ` clean_trajectories_with_few_points `
250+ - ` clean_trajectories_short_and_few_points `
251+ - ` clean_id_by_time_max `
252+ - 5: ** Compression** &rarr ; ` pymove.preprocessing.compression `
253+ - ` compress_segment_stop_to_point `
254+ - 6: ** Segmentation** &rarr ; ` pymove.preprocessing.segmentation `
255+ - ` bbox_split `
256+ - ` by_dist_time_speed `
257+ - ` by_max_dist `
258+ - ` by_max_time `
259+ - ` by_max_speed `
260+ - 7: ** Distance of Trajectory** &rarr ; ` pymove.query.query `
261+ - ` range_query `
262+ - ` knn_query `
263+ - 8: ** Query Historical Trajectories**
264+ - 9: ** Managing Recent Trajectories**
265+ - 10: ** Privacy Preserving**
266+ - 11: ** Reducing Uncertainty**
267+ - 12: ** Moving Together Patterns**
268+ - 13: ** Clustering** &rarr ; ` pymove.models.pattern_mining.clustering `
269+ - ` elbow_method `
270+ - ` gap_statistics `
271+ - ` dbscan_clustering `
272+ - 14: ** Freq. Seq. Patterns**
273+ - 15: ** Periodic Patterns**
274+ - 16: ** Trajectory Classification**
275+ - 17: ** Trajectory Outlier / Anomaly Detection** &rarr ; ` pymove.semantic.semantic `
276+ - ` outliers `
277+ - ` create_or_update_out_of_the_bbox `
278+ - ` create_or_update_gps_deactivated_signal `
279+ - ` create_or_update_gps_jump `
280+ - ` create_or_update_short_trajectory `
281+ - ` create_or_update_gps_block_signal `
282+ - ` filter_block_signal_by_repeated_amount_of_points `
283+ - ` filter_block_signal_by_time `
284+ - ` filter_longer_time_to_stop_segment_by_id `
285+
223286---
224287
225288## Papers
0 commit comments