@@ -55,6 +55,14 @@ def haversine(
5555 float or ndarray
5656 Represents distance between points in meters
5757
58+ Example
59+ -------
60+ >>> from pymove.utils.distances import haversine
61+ >>> lat_fortaleza, lon_fortaleza = [-3.71839 ,-38.5434]
62+ >>> lat_quixada, lon_quixada = [-4.979224744401671, -39.056434302570665]
63+ >>> haversine(lat_fortaleza, lon_fortaleza, lat_quixada, lon_quixada)
64+ 151298.02548428564
65+
5866 References
5967 ----------
6068 Vectorized haversine function:
@@ -98,6 +106,16 @@ def euclidean_distance_in_meters(
98106 -------
99107 float or ndarray
100108 euclidean distance in meters between the two points.
109+
110+ Example
111+ -------
112+ >>> from pymove.utils.distances import euclidean_distance_in_meters
113+ >>> lat_fortaleza, lon_fortaleza = [-3.71839 ,-38.5434]
114+ >>> lat_quixada, lon_quixada = [-4.979224744401671, -39.056434302570665]
115+ >>> euclidean_distance_in_meters(
116+ >>> lat_fortaleza, lon_fortaleza, lat_quixada, lon_quixada
117+ >>> )
118+ 151907.9670136588
101119 """
102120 y1 = utils .conversions .lat_to_y_spherical (lat = lat1 )
103121 y2 = utils .conversions .lat_to_y_spherical (lat = lat2 )
@@ -136,6 +154,21 @@ def nearest_points(
136154 DataFrame
137155 dataframe with closest points
138156
157+ Example
158+ -------
159+ >>> from pymove.utils.distances import nearest_points
160+ >>> df_a
161+ lat lon datetime id
162+ 0 39.984198 116.319322 2008-10-23 05:53:06 1
163+ 1 39.984224 116.319402 2008-10-23 05:53:11 1
164+ >>> df_b
165+ lat lon datetime id
166+ 0 39.984211 116.319389 2008-10-23 05:53:16 1
167+ 1 39.984217 116.319422 2008-10-23 05:53:21 1
168+ >>> nearest_points(df_a,df_b)
169+ lat lon datetime id
170+ 0 39.984211 116.319389 2008-10-23 05:53:16 1
171+ 1 39.984211 116.319389 2008-10-23 05:53:16 1
139172 """
140173 result = pd .DataFrame (columns = traj1 .columns )
141174
@@ -164,8 +197,7 @@ def medp(
164197 """
165198 Returns the Mean Euclidian Distance Predictive between two trajectories.
166199
167- Considers only the spatial
168- dimension for the similarity measure.
200+ Considers only the spatial dimension for the similarity measure.
169201
170202 Parameters
171203 ----------
@@ -184,6 +216,18 @@ def medp(
184216 -------
185217 float
186218 total distance
219+
220+ Example
221+ -------
222+ >>> from pymove.utils.distances import medp
223+ >>> traj_1
224+ lat lon datetime id
225+ 0 39.98471 116.319865 2008-10-23 05:53:23 1
226+ >>> traj_2
227+ lat lon datetime id
228+ 0 39.984674 116.31981 2008-10-23 05:53:28 1
229+ >>> medp(traj_1, traj_2)
230+ 6.573431370981577e-05
187231 """
188232 soma = 0
189233 traj2 = nearest_points (traj1 , traj2 , latitude , longitude )
@@ -230,6 +274,17 @@ def medt(
230274 float
231275 total distance
232276
277+ Example
278+ -------
279+ >>> from pymove.utils.distances import medt
280+ >>> traj_1
281+ lat lon datetime id
282+ 0 39.98471 116.319865 2008-10-23 05:53:23 1
283+ >>> traj_2
284+ lat lon datetime id
285+ 0 39.984674 116.31981 2008-10-23 05:53:28 1
286+ >>> medt(traj_1, traj_2)
287+ 6.592419887747872e-05
233288 """
234289 soma = 0
235290 proportion = 1000000000
0 commit comments