|
1 |
| -from numpy.core.numeric import normalize_axis_tuple |
| 1 | +# Data Parallel Control (dpctl) |
| 2 | +# |
| 3 | +# Copyright 2020-2024 Intel Corporation |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
2 | 16 |
|
| 17 | +import operator |
| 18 | + |
| 19 | +from numpy.core.numeric import normalize_axis_index, normalize_axis_tuple |
| 20 | + |
| 21 | +import dpctl |
3 | 22 | import dpctl.tensor as dpt
|
4 | 23 | import dpctl.tensor._tensor_impl as ti
|
5 | 24 | import dpctl.tensor._tensor_reductions_impl as tri
|
6 | 25 | import dpctl.utils as du
|
| 26 | +from dpctl.tensor._clip import ( |
| 27 | + _resolve_one_strong_one_weak_types, |
| 28 | + _resolve_one_strong_two_weak_types, |
| 29 | +) |
| 30 | +from dpctl.tensor._elementwise_common import ( |
| 31 | + _get_dtype, |
| 32 | + _get_queue_usm_type, |
| 33 | + _get_shape, |
| 34 | + _validate_dtype, |
| 35 | +) |
7 | 36 |
|
8 | 37 |
|
9 | 38 | def _boolean_reduction(x, axis, keepdims, func):
|
@@ -128,3 +157,272 @@ def any(x, /, *, axis=None, keepdims=False):
|
128 | 157 | containing the results of the logical OR reduction.
|
129 | 158 | """
|
130 | 159 | return _boolean_reduction(x, axis, keepdims, tri._any)
|
| 160 | + |
| 161 | + |
| 162 | +def _validate_diff_shape(sh1, sh2, axis): |
| 163 | + if not sh2: |
| 164 | + # scalars will always be accepted |
| 165 | + return True |
| 166 | + else: |
| 167 | + sh1_ndim = len(sh1) |
| 168 | + if sh1_ndim == len(sh2) and all( |
| 169 | + sh1[i] == sh2[i] for i in range(sh1_ndim) if i != axis |
| 170 | + ): |
| 171 | + return True |
| 172 | + else: |
| 173 | + return False |
| 174 | + |
| 175 | + |
| 176 | +def _concat_diff_input(arr, axis, prepend, append): |
| 177 | + if prepend is not None and append is not None: |
| 178 | + q1, x_usm_type = arr.sycl_queue, arr.usm_type |
| 179 | + q2, prepend_usm_type = _get_queue_usm_type(prepend) |
| 180 | + q3, append_usm_type = _get_queue_usm_type(append) |
| 181 | + if q2 is None and q3 is None: |
| 182 | + exec_q = q1 |
| 183 | + coerced_usm_type = x_usm_type |
| 184 | + elif q3 is None: |
| 185 | + exec_q = du.get_execution_queue((q1, q2)) |
| 186 | + if exec_q is None: |
| 187 | + raise du.ExecutionPlacementError( |
| 188 | + "Execution placement can not be unambiguously inferred " |
| 189 | + "from input arguments." |
| 190 | + ) |
| 191 | + coerced_usm_type = dpctl.utils.get_coerced_usm_type( |
| 192 | + ( |
| 193 | + x_usm_type, |
| 194 | + prepend_usm_type, |
| 195 | + ) |
| 196 | + ) |
| 197 | + elif q2 is None: |
| 198 | + exec_q = du.get_execution_queue((q1, q3)) |
| 199 | + if exec_q is None: |
| 200 | + raise du.ExecutionPlacementError( |
| 201 | + "Execution placement can not be unambiguously inferred " |
| 202 | + "from input arguments." |
| 203 | + ) |
| 204 | + coerced_usm_type = du.get_coerced_usm_type( |
| 205 | + ( |
| 206 | + x_usm_type, |
| 207 | + append_usm_type, |
| 208 | + ) |
| 209 | + ) |
| 210 | + else: |
| 211 | + exec_q = du.get_execution_queue((q1, q2, q3)) |
| 212 | + if exec_q is None: |
| 213 | + raise du.ExecutionPlacementError( |
| 214 | + "Execution placement can not be unambiguously inferred " |
| 215 | + "from input arguments." |
| 216 | + ) |
| 217 | + coerced_usm_type = du.get_coerced_usm_type( |
| 218 | + ( |
| 219 | + x_usm_type, |
| 220 | + prepend_usm_type, |
| 221 | + append_usm_type, |
| 222 | + ) |
| 223 | + ) |
| 224 | + du.validate_usm_type(coerced_usm_type, allow_none=False) |
| 225 | + arr_shape = arr.shape |
| 226 | + prepend_shape = _get_shape(prepend) |
| 227 | + append_shape = _get_shape(append) |
| 228 | + if not all( |
| 229 | + isinstance(s, (tuple, list)) |
| 230 | + for s in ( |
| 231 | + prepend_shape, |
| 232 | + append_shape, |
| 233 | + ) |
| 234 | + ): |
| 235 | + raise TypeError( |
| 236 | + "Shape of arguments can not be inferred. " |
| 237 | + "Arguments are expected to be " |
| 238 | + "lists, tuples, or both" |
| 239 | + ) |
| 240 | + valid_prepend_shape = _validate_diff_shape( |
| 241 | + arr_shape, prepend_shape, axis |
| 242 | + ) |
| 243 | + if not valid_prepend_shape: |
| 244 | + raise ValueError( |
| 245 | + f"`diff` argument `prepend` with shape {prepend_shape} is " |
| 246 | + f"invalid for first input with shape {arr_shape}" |
| 247 | + ) |
| 248 | + valid_append_shape = _validate_diff_shape(arr_shape, append_shape, axis) |
| 249 | + if not valid_append_shape: |
| 250 | + raise ValueError( |
| 251 | + f"`diff` argument `append` with shape {append_shape} is invalid" |
| 252 | + f" for first input with shape {arr_shape}" |
| 253 | + ) |
| 254 | + sycl_dev = exec_q.sycl_device |
| 255 | + arr_dtype = arr.dtype |
| 256 | + prepend_dtype = _get_dtype(prepend, sycl_dev) |
| 257 | + append_dtype = _get_dtype(append, sycl_dev) |
| 258 | + if not all(_validate_dtype(o) for o in (prepend_dtype, append_dtype)): |
| 259 | + raise ValueError("Operands have unsupported data types") |
| 260 | + prepend_dtype, append_dtype = _resolve_one_strong_two_weak_types( |
| 261 | + arr_dtype, prepend_dtype, append_dtype, sycl_dev |
| 262 | + ) |
| 263 | + if isinstance(prepend, dpt.usm_ndarray): |
| 264 | + a_prepend = prepend |
| 265 | + else: |
| 266 | + a_prepend = dpt.asarray( |
| 267 | + prepend, |
| 268 | + dtype=prepend_dtype, |
| 269 | + usm_type=coerced_usm_type, |
| 270 | + sycl_queue=exec_q, |
| 271 | + ) |
| 272 | + if isinstance(append, dpt.usm_ndarray): |
| 273 | + a_append = append |
| 274 | + else: |
| 275 | + a_append = dpt.asarray( |
| 276 | + prepend, |
| 277 | + dtype=append_dtype, |
| 278 | + usm_type=coerced_usm_type, |
| 279 | + sycl_queue=exec_q, |
| 280 | + ) |
| 281 | + if not prepend_shape: |
| 282 | + prepend_shape = arr_shape[:axis] + (1,) + arr_shape[axis + 1 :] |
| 283 | + a_prepend = dpt.broadcast_to(a_prepend, arr_shape) |
| 284 | + if not append_shape: |
| 285 | + append_shape = arr_shape[:axis] + (1,) + arr_shape[axis + 1 :] |
| 286 | + a_append = dpt.broadcast_to(a_append, arr_shape) |
| 287 | + return dpt.concat((a_prepend, arr, a_append), axis=axis) |
| 288 | + elif prepend is not None: |
| 289 | + q1, x_usm_type = arr.sycl_queue, arr.usm_type |
| 290 | + q2, prepend_usm_type = _get_queue_usm_type(prepend) |
| 291 | + if q2 is None: |
| 292 | + exec_q = q1 |
| 293 | + coerced_usm_type = x_usm_type |
| 294 | + else: |
| 295 | + exec_q = du.get_execution_queue((q1, q2)) |
| 296 | + if exec_q is None: |
| 297 | + raise du.ExecutionPlacementError( |
| 298 | + "Execution placement can not be unambiguously inferred " |
| 299 | + "from input arguments." |
| 300 | + ) |
| 301 | + coerced_usm_type = dpctl.utils.get_coerced_usm_type( |
| 302 | + ( |
| 303 | + x_usm_type, |
| 304 | + prepend_usm_type, |
| 305 | + ) |
| 306 | + ) |
| 307 | + du.validate_usm_type(coerced_usm_type, allow_none=False) |
| 308 | + arr_shape = arr.shape |
| 309 | + prepend_shape = _get_shape(prepend) |
| 310 | + if not isinstance(prepend_shape, (tuple, list)): |
| 311 | + raise TypeError( |
| 312 | + "Shape of argument can not be inferred. " |
| 313 | + "Argument is expected to be a " |
| 314 | + "list or tuple" |
| 315 | + ) |
| 316 | + valid_prepend_shape = _validate_diff_shape( |
| 317 | + arr_shape, prepend_shape, axis |
| 318 | + ) |
| 319 | + if not valid_prepend_shape: |
| 320 | + raise ValueError( |
| 321 | + f"`diff` argument `prepend` with shape {prepend_shape} is " |
| 322 | + f"invalid for first input with shape {arr_shape}" |
| 323 | + ) |
| 324 | + sycl_dev = exec_q.sycl_device |
| 325 | + arr_dtype = arr.dtype |
| 326 | + prepend_dtype = _get_dtype(prepend, sycl_dev) |
| 327 | + if not _validate_dtype(prepend_dtype): |
| 328 | + raise ValueError("Operand has unsupported data type") |
| 329 | + prepend_dtype = _resolve_one_strong_one_weak_types( |
| 330 | + arr_dtype, prepend_dtype, sycl_dev |
| 331 | + ) |
| 332 | + if isinstance(prepend, dpt.usm_ndarray): |
| 333 | + a_prepend = prepend |
| 334 | + else: |
| 335 | + a_prepend = dpt.asarray( |
| 336 | + prepend, |
| 337 | + dtype=prepend_dtype, |
| 338 | + usm_type=coerced_usm_type, |
| 339 | + sycl_queue=exec_q, |
| 340 | + ) |
| 341 | + if not prepend_shape: |
| 342 | + prepend_shape = arr_shape[:axis] + (1,) + arr_shape[axis + 1 :] |
| 343 | + a_prepend = dpt.broadcast_to(a_prepend, arr_shape) |
| 344 | + return dpt.concat((a_prepend, arr), axis=axis) |
| 345 | + elif append is not None: |
| 346 | + q1, x_usm_type = arr.sycl_queue, arr.usm_type |
| 347 | + q2, append_usm_type = _get_queue_usm_type(append) |
| 348 | + if q2 is None: |
| 349 | + exec_q = q1 |
| 350 | + coerced_usm_type = x_usm_type |
| 351 | + else: |
| 352 | + exec_q = du.get_execution_queue((q1, q2)) |
| 353 | + if exec_q is None: |
| 354 | + raise du.ExecutionPlacementError( |
| 355 | + "Execution placement can not be unambiguously inferred " |
| 356 | + "from input arguments." |
| 357 | + ) |
| 358 | + coerced_usm_type = dpctl.utils.get_coerced_usm_type( |
| 359 | + ( |
| 360 | + x_usm_type, |
| 361 | + append_usm_type, |
| 362 | + ) |
| 363 | + ) |
| 364 | + du.validate_usm_type(coerced_usm_type, allow_none=False) |
| 365 | + arr_shape = arr.shape |
| 366 | + append_shape = _get_shape(append) |
| 367 | + if not isinstance(append_shape, (tuple, list)): |
| 368 | + raise TypeError( |
| 369 | + "Shape of argument can not be inferred. " |
| 370 | + "Argument is expected to be a " |
| 371 | + "list or tuple" |
| 372 | + ) |
| 373 | + valid_append_shape = _validate_diff_shape(arr_shape, append_shape, axis) |
| 374 | + if not valid_append_shape: |
| 375 | + raise ValueError( |
| 376 | + f"`diff` argument `append` with shape {append_shape} is invalid" |
| 377 | + f" for first input with shape {arr_shape}" |
| 378 | + ) |
| 379 | + sycl_dev = exec_q.sycl_device |
| 380 | + arr_dtype = arr.dtype |
| 381 | + append_dtype = _get_dtype(append, sycl_dev) |
| 382 | + if not _validate_dtype(append_dtype): |
| 383 | + raise ValueError("Operand has unsupported data type") |
| 384 | + append_dtype = _resolve_one_strong_one_weak_types( |
| 385 | + arr_dtype, append_dtype, sycl_dev |
| 386 | + ) |
| 387 | + if isinstance(append, dpt.usm_ndarray): |
| 388 | + a_append = append |
| 389 | + else: |
| 390 | + a_append = dpt.asarray( |
| 391 | + append, |
| 392 | + dtype=append_dtype, |
| 393 | + usm_type=coerced_usm_type, |
| 394 | + sycl_queue=exec_q, |
| 395 | + ) |
| 396 | + if not append_shape: |
| 397 | + append_shape = arr_shape[:axis] + (1,) + arr_shape[axis + 1 :] |
| 398 | + a_append = dpt.broadcast_to(a_append, arr_shape) |
| 399 | + return dpt.concat((arr, a_append), axis=axis) |
| 400 | + else: |
| 401 | + arr1 = arr |
| 402 | + return arr1 |
| 403 | + |
| 404 | + |
| 405 | +def diff(x, /, *, axis=-1, n=1, prepend=None, append=None): |
| 406 | + |
| 407 | + if not isinstance(x, dpt.usm_ndarray): |
| 408 | + raise TypeError( |
| 409 | + "Expecting dpctl.tensor.usm_ndarray type, " f"got {type(x)}" |
| 410 | + ) |
| 411 | + x_nd = x.ndim |
| 412 | + axis = normalize_axis_index(operator.index(axis), x_nd) |
| 413 | + n = operator.index(n) |
| 414 | + |
| 415 | + arr = _concat_diff_input(x, axis, prepend, append) |
| 416 | + |
| 417 | + # form slices and recurse |
| 418 | + sl0 = tuple( |
| 419 | + slice(None) if i != axis else slice(1, None) for i in range(x_nd) |
| 420 | + ) |
| 421 | + sl1 = tuple( |
| 422 | + slice(None) if i != axis else slice(None, -1) for i in range(x_nd) |
| 423 | + ) |
| 424 | + |
| 425 | + for _ in range(n): |
| 426 | + arr = arr[sl0] - arr[sl1] |
| 427 | + |
| 428 | + return arr |
0 commit comments