|
| 1 | +import unittest |
| 2 | +from dpctl import dparray |
| 3 | +import numpy |
| 4 | + |
| 5 | + |
| 6 | +def func_operation_with_const(dpctl_array): |
| 7 | + return dpctl_array * 2.0 + 13 |
| 8 | + |
| 9 | + |
| 10 | +def multiply_func(np_array, dpcrtl_array): |
| 11 | + return np_array * dpcrtl_array |
| 12 | + |
| 13 | + |
| 14 | +class TestOverloadList(unittest.TestCase): |
| 15 | + maxDiff = None |
| 16 | + |
| 17 | + X = dparray.ndarray((256, 4), dtype='d') |
| 18 | + X.fill(1.0) |
| 19 | + |
| 20 | + def test_dparray_type(self): |
| 21 | + self.assertIsInstance(self.X, dparray.ndarray) |
| 22 | + |
| 23 | + def test_dparray_as_ndarray_self(self): |
| 24 | + Y = self.X.as_ndarray() |
| 25 | + self.assertEqual(type(Y), numpy.ndarray) |
| 26 | + |
| 27 | + def test_dparray_as_ndarray(self): |
| 28 | + Y = dparray.as_ndarray(self.X) |
| 29 | + self.assertEqual(type(Y), numpy.ndarray) |
| 30 | + |
| 31 | + def test_dparray_from_ndarray(self): |
| 32 | + Y = dparray.as_ndarray(self.X) |
| 33 | + dp1 = dparray.from_ndarray(Y) |
| 34 | + self.assertIsInstance(dp1, dparray.ndarray) |
| 35 | + |
| 36 | + def test_multiplication_dparray(self): |
| 37 | + C = self.X * 5 |
| 38 | + self.assertIsInstance(C, dparray.ndarray) |
| 39 | + |
| 40 | + def test_dparray_through_python_func(self): |
| 41 | + C = self.X * 5 |
| 42 | + dp_func = func_operation_with_const(C) |
| 43 | + self.assertIsInstance(dp_func, dparray.ndarray) |
| 44 | + |
| 45 | + def test_dparray_mixing_dpctl_and_numpy(self): |
| 46 | + dp_numpy = numpy.ones((256, 4), dtype='d') |
| 47 | + res = multiply_func(dp_numpy, self.X) |
| 48 | + self.assertIsInstance(res, dparray.ndarray) |
| 49 | + |
| 50 | + def test_dparray_shape(self): |
| 51 | + res = self.X.shape |
| 52 | + self.assertEqual(res, (256, 4)) |
| 53 | + |
| 54 | + def test_dparray_T(self): |
| 55 | + res = self.X.T |
| 56 | + self.assertEqual(res.shape, (4, 256)) |
| 57 | + |
| 58 | + |
| 59 | +if __name__ == '__main__': |
| 60 | + unittest.main() |
0 commit comments