|
| 1 | +//***************************************************************************** |
| 2 | +// Copyright (c) 2024, Intel Corporation |
| 3 | +// All rights reserved. |
| 4 | +// |
| 5 | +// Redistribution and use in source and binary forms, with or without |
| 6 | +// modification, are permitted provided that the following conditions are met: |
| 7 | +// - Redistributions of source code must retain the above copyright notice, |
| 8 | +// this list of conditions and the following disclaimer. |
| 9 | +// - Redistributions in binary form must reproduce the above copyright notice, |
| 10 | +// this list of conditions and the following disclaimer in the documentation |
| 11 | +// and/or other materials provided with the distribution. |
| 12 | +// |
| 13 | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 14 | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 16 | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 17 | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | +// THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | +//***************************************************************************** |
| 25 | + |
| 26 | +#include <stdexcept> |
| 27 | + |
| 28 | +#include <sycl/sycl.hpp> |
| 29 | + |
| 30 | +#include "dpctl4pybind11.hpp" |
| 31 | +#include <pybind11/numpy.h> |
| 32 | +#include <pybind11/pybind11.h> |
| 33 | +#include <pybind11/stl.h> |
| 34 | + |
| 35 | +#include "kernels/elementwise_functions/nan_to_num.hpp" |
| 36 | + |
| 37 | +#include "../../elementwise_functions/simplify_iteration_space.hpp" |
| 38 | + |
| 39 | +// dpctl tensor headers |
| 40 | +#include "utils/memory_overlap.hpp" |
| 41 | +#include "utils/offset_utils.hpp" |
| 42 | +#include "utils/output_validation.hpp" |
| 43 | +#include "utils/sycl_alloc_utils.hpp" |
| 44 | +#include "utils/type_dispatch.hpp" |
| 45 | +#include "utils/type_utils.hpp" |
| 46 | + |
| 47 | +namespace py = pybind11; |
| 48 | +namespace td_ns = dpctl::tensor::type_dispatch; |
| 49 | + |
| 50 | +// declare pybind11 wrappers in py_internal namespace |
| 51 | +namespace dpnp::extensions::ufunc |
| 52 | +{ |
| 53 | + |
| 54 | +namespace impl |
| 55 | +{ |
| 56 | +typedef sycl::event (*nan_to_num_fn_ptr_t)(sycl::queue &, |
| 57 | + int, |
| 58 | + size_t, |
| 59 | + py::ssize_t *, |
| 60 | + const py::object &, |
| 61 | + const py::object &, |
| 62 | + const py::object &, |
| 63 | + const char *, |
| 64 | + py::ssize_t, |
| 65 | + char *, |
| 66 | + py::ssize_t, |
| 67 | + const std::vector<sycl::event> &); |
| 68 | + |
| 69 | +template <typename T> |
| 70 | +sycl::event nan_to_num_call(sycl::queue &exec_q, |
| 71 | + int nd, |
| 72 | + size_t nelems, |
| 73 | + py::ssize_t *shape_strides, |
| 74 | + const py::object &py_nan, |
| 75 | + const py::object &py_posinf, |
| 76 | + const py::object &py_neginf, |
| 77 | + const char *arg_p, |
| 78 | + py::ssize_t arg_offset, |
| 79 | + char *dst_p, |
| 80 | + py::ssize_t dst_offset, |
| 81 | + const std::vector<sycl::event> &depends) |
| 82 | +{ |
| 83 | + sycl::event to_num_ev; |
| 84 | + |
| 85 | + using dpctl::tensor::type_utils::is_complex; |
| 86 | + if constexpr (is_complex<T>::value) { |
| 87 | + using realT = typename T::value_type; |
| 88 | + realT nan_v = py::cast<realT>(py_nan); |
| 89 | + realT posinf_v = py::cast<realT>(py_posinf); |
| 90 | + realT neginf_v = py::cast<realT>(py_neginf); |
| 91 | + |
| 92 | + using dpnp::kernels::nan_to_num::nan_to_num_impl; |
| 93 | + to_num_ev = nan_to_num_impl<T, realT>( |
| 94 | + exec_q, nd, nelems, shape_strides, nan_v, posinf_v, neginf_v, arg_p, |
| 95 | + arg_offset, dst_p, dst_offset, depends); |
| 96 | + } |
| 97 | + else { |
| 98 | + T nan_v = py::cast<T>(py_nan); |
| 99 | + T posinf_v = py::cast<T>(py_posinf); |
| 100 | + T neginf_v = py::cast<T>(py_neginf); |
| 101 | + |
| 102 | + using dpnp::kernels::nan_to_num::nan_to_num_impl; |
| 103 | + to_num_ev = nan_to_num_impl<T, T>( |
| 104 | + exec_q, nd, nelems, shape_strides, nan_v, posinf_v, neginf_v, arg_p, |
| 105 | + arg_offset, dst_p, dst_offset, depends); |
| 106 | + } |
| 107 | + return to_num_ev; |
| 108 | +} |
| 109 | + |
| 110 | +namespace td_ns = dpctl::tensor::type_dispatch; |
| 111 | +nan_to_num_fn_ptr_t nan_to_num_dispatch_vector[td_ns::num_types]; |
| 112 | + |
| 113 | +std::pair<sycl::event, sycl::event> |
| 114 | + py_nan_to_num(const dpctl::tensor::usm_ndarray &src, |
| 115 | + const py::object &py_nan, |
| 116 | + const py::object &py_posinf, |
| 117 | + const py::object &py_neginf, |
| 118 | + const dpctl::tensor::usm_ndarray &dst, |
| 119 | + sycl::queue &q, |
| 120 | + const std::vector<sycl::event> &depends) |
| 121 | +{ |
| 122 | + int src_typenum = src.get_typenum(); |
| 123 | + int dst_typenum = dst.get_typenum(); |
| 124 | + |
| 125 | + const auto &array_types = td_ns::usm_ndarray_types(); |
| 126 | + int src_typeid = array_types.typenum_to_lookup_id(src_typenum); |
| 127 | + int dst_typeid = array_types.typenum_to_lookup_id(dst_typenum); |
| 128 | + |
| 129 | + if (src_typeid != dst_typeid) { |
| 130 | + throw py::value_error("Array data types are not the same."); |
| 131 | + } |
| 132 | + |
| 133 | + if (!dpctl::utils::queues_are_compatible(q, {src, dst})) { |
| 134 | + throw py::value_error( |
| 135 | + "Execution queue is not compatible with allocation queues"); |
| 136 | + } |
| 137 | + |
| 138 | + dpctl::tensor::validation::CheckWritable::throw_if_not_writable(dst); |
| 139 | + |
| 140 | + int src_nd = src.get_ndim(); |
| 141 | + if (src_nd != dst.get_ndim()) { |
| 142 | + throw py::value_error("Array dimensions are not the same."); |
| 143 | + } |
| 144 | + |
| 145 | + const py::ssize_t *src_shape = src.get_shape_raw(); |
| 146 | + const py::ssize_t *dst_shape = dst.get_shape_raw(); |
| 147 | + |
| 148 | + bool shapes_equal(true); |
| 149 | + size_t nelems(1); |
| 150 | + for (int i = 0; i < src_nd; ++i) { |
| 151 | + nelems *= static_cast<size_t>(src_shape[i]); |
| 152 | + shapes_equal = shapes_equal && (src_shape[i] == dst_shape[i]); |
| 153 | + } |
| 154 | + if (!shapes_equal) { |
| 155 | + throw py::value_error("Array shapes are not the same."); |
| 156 | + } |
| 157 | + |
| 158 | + // if nelems is zero, return |
| 159 | + if (nelems == 0) { |
| 160 | + return std::make_pair(sycl::event(), sycl::event()); |
| 161 | + } |
| 162 | + |
| 163 | + dpctl::tensor::validation::AmpleMemory::throw_if_not_ample(dst, nelems); |
| 164 | + |
| 165 | + // check memory overlap |
| 166 | + auto const &overlap = dpctl::tensor::overlap::MemoryOverlap(); |
| 167 | + auto const &same_logical_tensors = |
| 168 | + dpctl::tensor::overlap::SameLogicalTensors(); |
| 169 | + if (overlap(src, dst) && !same_logical_tensors(src, dst)) { |
| 170 | + throw py::value_error("Arrays index overlapping segments of memory"); |
| 171 | + } |
| 172 | + |
| 173 | + const char *src_data = src.get_data(); |
| 174 | + char *dst_data = dst.get_data(); |
| 175 | + |
| 176 | + auto const &src_strides = src.get_strides_vector(); |
| 177 | + auto const &dst_strides = dst.get_strides_vector(); |
| 178 | + |
| 179 | + using shT = std::vector<py::ssize_t>; |
| 180 | + shT simplified_shape; |
| 181 | + shT simplified_src_strides; |
| 182 | + shT simplified_dst_strides; |
| 183 | + py::ssize_t src_offset(0); |
| 184 | + py::ssize_t dst_offset(0); |
| 185 | + |
| 186 | + int nd = src_nd; |
| 187 | + const py::ssize_t *shape = src_shape; |
| 188 | + |
| 189 | + py_internal::simplify_iteration_space( |
| 190 | + nd, shape, src_strides, dst_strides, |
| 191 | + // output |
| 192 | + simplified_shape, simplified_src_strides, simplified_dst_strides, |
| 193 | + src_offset, dst_offset); |
| 194 | + |
| 195 | + auto fn = nan_to_num_dispatch_vector[src_typeid]; |
| 196 | + |
| 197 | + if (fn == nullptr) { |
| 198 | + throw std::runtime_error( |
| 199 | + "nan_to_num implementation is missing for src_typeid=" + |
| 200 | + std::to_string(src_typeid)); |
| 201 | + } |
| 202 | + |
| 203 | + using dpctl::tensor::offset_utils::device_allocate_and_pack; |
| 204 | + |
| 205 | + std::vector<sycl::event> host_tasks{}; |
| 206 | + host_tasks.reserve(2); |
| 207 | + |
| 208 | + const auto &ptr_size_event_triple_ = device_allocate_and_pack<py::ssize_t>( |
| 209 | + q, host_tasks, simplified_shape, simplified_src_strides, |
| 210 | + simplified_dst_strides); |
| 211 | + py::ssize_t *shape_strides = std::get<0>(ptr_size_event_triple_); |
| 212 | + const sycl::event ©_shape_ev = std::get<2>(ptr_size_event_triple_); |
| 213 | + |
| 214 | + if (shape_strides == nullptr) { |
| 215 | + throw std::runtime_error("Device memory allocation failed"); |
| 216 | + } |
| 217 | + |
| 218 | + std::vector<sycl::event> all_deps; |
| 219 | + all_deps.reserve(depends.size() + 1); |
| 220 | + all_deps.insert(all_deps.end(), depends.begin(), depends.end()); |
| 221 | + all_deps.push_back(copy_shape_ev); |
| 222 | + |
| 223 | + sycl::event comp_ev = |
| 224 | + fn(q, nelems, nd, shape_strides, py_nan, py_posinf, py_neginf, src_data, |
| 225 | + src_offset, dst_data, dst_offset, all_deps); |
| 226 | + |
| 227 | + // async free of shape_strides temporary |
| 228 | + auto ctx = q.get_context(); |
| 229 | + sycl::event tmp_cleanup_ev = q.submit([&](sycl::handler &cgh) { |
| 230 | + cgh.depends_on(comp_ev); |
| 231 | + using dpctl::tensor::alloc_utils::sycl_free_noexcept; |
| 232 | + cgh.host_task( |
| 233 | + [ctx, shape_strides]() { sycl_free_noexcept(shape_strides, ctx); }); |
| 234 | + }); |
| 235 | + host_tasks.push_back(tmp_cleanup_ev); |
| 236 | + |
| 237 | + return std::make_pair( |
| 238 | + dpctl::utils::keep_args_alive(q, {src, dst}, host_tasks), comp_ev); |
| 239 | +} |
| 240 | + |
| 241 | +namespace py_int = dpnp::extensions::py_internal; |
| 242 | + |
| 243 | +/** |
| 244 | + * @brief A factory to define pairs of supported types for which |
| 245 | + * nan_to_num_call<T> function is available. |
| 246 | + * |
| 247 | + * @tparam T Type of input vector `a` and of result vector `y`. |
| 248 | + */ |
| 249 | +template <typename T> |
| 250 | +struct NanToNumOutputType |
| 251 | +{ |
| 252 | + using value_type = typename std::disjunction< |
| 253 | + td_ns::TypeMapResultEntry<T, sycl::half>, |
| 254 | + td_ns::TypeMapResultEntry<T, float>, |
| 255 | + td_ns::TypeMapResultEntry<T, double>, |
| 256 | + td_ns::TypeMapResultEntry<T, std::complex<float>>, |
| 257 | + td_ns::TypeMapResultEntry<T, std::complex<double>>, |
| 258 | + td_ns::DefaultResultEntry<void>>::result_type; |
| 259 | +}; |
| 260 | + |
| 261 | +template <typename fnT, typename T> |
| 262 | +struct NanToNumFactory |
| 263 | +{ |
| 264 | + fnT get() |
| 265 | + { |
| 266 | + if constexpr (std::is_same_v<typename NanToNumOutputType<T>::value_type, |
| 267 | + void>) { |
| 268 | + return nullptr; |
| 269 | + } |
| 270 | + else { |
| 271 | + using ::dpnp::extensions::ufunc::impl::nan_to_num_call; |
| 272 | + return nan_to_num_call<T>; |
| 273 | + } |
| 274 | + } |
| 275 | +}; |
| 276 | + |
| 277 | +void populate_nan_to_num_dispatch_vector(void) |
| 278 | +{ |
| 279 | + using namespace td_ns; |
| 280 | + |
| 281 | + DispatchVectorBuilder<nan_to_num_fn_ptr_t, NanToNumFactory, num_types> dvb; |
| 282 | + dvb.populate_dispatch_vector(nan_to_num_dispatch_vector); |
| 283 | +} |
| 284 | + |
| 285 | +} // namespace impl |
| 286 | + |
| 287 | +void init_nan_to_num(py::module_ m) |
| 288 | +{ |
| 289 | + { |
| 290 | + impl::populate_nan_to_num_dispatch_vector(); |
| 291 | + |
| 292 | + using impl::py_nan_to_num; |
| 293 | + m.def("_nan_to_num", &py_nan_to_num, "", py::arg("src"), |
| 294 | + py::arg("py_nan"), py::arg("py_posinf"), py::arg("py_neginf"), |
| 295 | + py::arg("dst"), py::arg("sycl_queue"), |
| 296 | + py::arg("depends") = py::list()); |
| 297 | + } |
| 298 | +} |
| 299 | + |
| 300 | +} // namespace dpnp::extensions::ufunc |
0 commit comments