|
25 | 25 | has_support_aspect64,
|
26 | 26 | is_cpu_device,
|
27 | 27 | numpy_version,
|
28 |
| - requires_intel_mkl_version, |
29 | 28 | )
|
30 | 29 | from .third_party.cupy import testing
|
31 | 30 |
|
@@ -1747,10 +1746,6 @@ def test_inv_singular_matrix(self, matrix):
|
1747 | 1746 | assert_raises(numpy.linalg.LinAlgError, numpy.linalg.inv, a_np)
|
1748 | 1747 | assert_raises(dpnp.linalg.LinAlgError, dpnp.linalg.inv, a_dp)
|
1749 | 1748 |
|
1750 |
| - # TODO: remove skipif when Intel MKL 2025.2 is released |
1751 |
| - @pytest.mark.skipif( |
1752 |
| - not requires_intel_mkl_version("2025.2"), reason="mkl<2025.2" |
1753 |
| - ) |
1754 | 1749 | def test_inv_singular_matrix_3D(self):
|
1755 | 1750 | a_np = numpy.array(
|
1756 | 1751 | [[[1, 2], [3, 4]], [[1, 2], [1, 2]], [[1, 3], [3, 1]]]
|
@@ -2766,13 +2761,6 @@ def test_slogdet_strides(self):
|
2766 | 2761 | assert_allclose(sign_result, sign_expected)
|
2767 | 2762 | assert_allclose(logdet_result, logdet_expected)
|
2768 | 2763 |
|
2769 |
| - # TODO: remove skipif when Intel MKL 2025.2 is released |
2770 |
| - # Skip running on CPU because dpnp uses _getrf_batch only on CPU |
2771 |
| - # for dpnp.linalg.det/slogdet. |
2772 |
| - @pytest.mark.skipif( |
2773 |
| - is_cpu_device() and not requires_intel_mkl_version("2025.2"), |
2774 |
| - reason="mkl<2025.2", |
2775 |
| - ) |
2776 | 2764 | @pytest.mark.parametrize(
|
2777 | 2765 | "matrix",
|
2778 | 2766 | [
|
@@ -2803,13 +2791,6 @@ def test_slogdet_singular_matrix(self, matrix):
|
2803 | 2791 | assert_allclose(sign_result, sign_expected)
|
2804 | 2792 | assert_allclose(logdet_result, logdet_expected)
|
2805 | 2793 |
|
2806 |
| - # TODO: remove skipif when Intel MKL 2025.2 is released |
2807 |
| - # Skip running on CPU because dpnp uses _getrf_batch only on CPU |
2808 |
| - # for dpnp.linalg.det/slogdet. |
2809 |
| - @pytest.mark.skipif( |
2810 |
| - is_cpu_device() and not requires_intel_mkl_version("2025.2"), |
2811 |
| - reason="mkl<2025.2", |
2812 |
| - ) |
2813 | 2794 | def test_slogdet_singular_matrix_3D(self):
|
2814 | 2795 | a_np = numpy.array(
|
2815 | 2796 | [[[1, 2], [3, 4]], [[1, 2], [1, 2]], [[1, 3], [3, 1]]]
|
|
0 commit comments