@@ -3599,10 +3599,10 @@ def setup_method(self):
35993599 numpy .random .seed (42 )
36003600
36013601 @pytest .mark .parametrize (
3602- "order_pair " , [("C" , "C" ), ("C" , "F" ), ("F" , "C" ), ("F" , "F" )]
3602+ "order1, order2 " , [("C" , "C" ), ("C" , "F" ), ("F" , "C" ), ("F" , "F" )]
36033603 )
36043604 @pytest .mark .parametrize (
3605- "shape_pair " ,
3605+ "shape1, shape2 " ,
36063606 [
36073607 ((4 ,), (4 ,)),
36083608 ((1 , 4 ), (4 , 1 )),
@@ -3651,9 +3651,7 @@ def setup_method(self):
36513651 ((1 , 3 , 3 , 1 ), (4 , 1 , 1 , 2 )),
36523652 ],
36533653 )
3654- def test_matmul (self , order_pair , shape_pair ):
3655- order1 , order2 = order_pair
3656- shape1 , shape2 = shape_pair
3654+ def test_matmul (self , order1 , order2 , shape1 , shape2 ):
36573655 # input should be float type otherwise they are copied to c-contigous array
36583656 # so testing order becomes meaningless
36593657 dtype = dpnp .default_float_type ()
@@ -3669,10 +3667,10 @@ def test_matmul(self, order_pair, shape_pair):
36693667 assert_dtype_allclose (result , expected )
36703668
36713669 @pytest .mark .parametrize (
3672- "order_pair " , [("C" , "C" ), ("C" , "F" ), ("F" , "C" ), ("F" , "F" )]
3670+ "order1, order2 " , [("C" , "C" ), ("C" , "F" ), ("F" , "C" ), ("F" , "F" )]
36733671 )
36743672 @pytest .mark .parametrize (
3675- "shape_pair " ,
3673+ "shape1, shape2 " ,
36763674 [
36773675 ((2 , 0 ), (0 , 3 )),
36783676 ((0 , 4 ), (4 , 3 )),
@@ -3695,15 +3693,12 @@ def test_matmul(self, order_pair, shape_pair):
36953693 ((7 , 4 , 3 ), (0 , 7 , 3 , 5 )),
36963694 ],
36973695 )
3698- def test_matmul_empty (self , order_pair , shape_pair ):
3699- order1 , order2 = order_pair
3700- shape1 , shape2 = shape_pair
3696+ def test_matmul_empty (self , order1 , order2 , shape1 , shape2 ):
37013697 dtype = dpnp .default_float_type ()
37023698 a1 = numpy .arange (numpy .prod (shape1 ), dtype = dtype ).reshape (shape1 )
37033699 a2 = numpy .arange (numpy .prod (shape2 ), dtype = dtype ).reshape (shape2 )
37043700 a1 = numpy .array (a1 , order = order1 )
37053701 a2 = numpy .array (a2 , order = order2 )
3706-
37073702 b1 = dpnp .asarray (a1 )
37083703 b2 = dpnp .asarray (a2 )
37093704
@@ -3712,7 +3707,7 @@ def test_matmul_empty(self, order_pair, shape_pair):
37123707 assert_dtype_allclose (result , expected )
37133708
37143709 @pytest .mark .parametrize (
3715- "shape_pair " ,
3710+ "shape1, shape2 " ,
37163711 [
37173712 ((2 , 4 ), (4 , 3 )),
37183713 ((4 , 2 , 3 ), (4 , 3 , 5 )),
@@ -3724,15 +3719,10 @@ def test_matmul_empty(self, order_pair, shape_pair):
37243719 "((6, 7, 4, 3), (6, 7, 3, 5))" ,
37253720 ],
37263721 )
3727- def test_matmul_bool (self , shape_pair ):
3728- shape1 , shape2 = shape_pair
3729- a1 = numpy .resize (
3730- numpy .arange (2 , dtype = numpy .bool_ ), numpy .prod (shape1 )
3731- ).reshape (shape1 )
3732- a2 = numpy .resize (
3733- numpy .arange (2 , dtype = numpy .bool_ ), numpy .prod (shape2 )
3734- ).reshape (shape2 )
3735-
3722+ def test_matmul_bool (self , shape1 , shape2 ):
3723+ x = numpy .arange (2 , dtype = numpy .bool_ )
3724+ a1 = numpy .resize (x , numpy .prod (shape1 )).reshape (shape1 )
3725+ a2 = numpy .resize (x , numpy .prod (shape2 )).reshape (shape2 )
37363726 b1 = dpnp .asarray (a1 )
37373727 b2 = dpnp .asarray (a2 )
37383728
@@ -3742,7 +3732,7 @@ def test_matmul_bool(self, shape_pair):
37423732
37433733 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
37443734 @pytest .mark .parametrize (
3745- "shape_pair " ,
3735+ "shape1, shape2 " ,
37463736 [
37473737 ((2 , 4 ), (4 , 3 )),
37483738 ((4 , 2 , 3 ), (4 , 3 , 5 )),
@@ -3754,11 +3744,9 @@ def test_matmul_bool(self, shape_pair):
37543744 "((6, 7, 4, 3), (6, 7, 3, 5))" ,
37553745 ],
37563746 )
3757- def test_matmul_dtype (self , dtype , shape_pair ):
3758- shape1 , shape2 = shape_pair
3747+ def test_matmul_dtype (self , dtype , shape1 , shape2 ):
37593748 a1 = numpy .arange (numpy .prod (shape1 )).reshape (shape1 )
37603749 a2 = numpy .arange (numpy .prod (shape2 )).reshape (shape2 )
3761-
37623750 b1 = dpnp .asarray (a1 )
37633751 b2 = dpnp .asarray (a2 )
37643752
@@ -3892,7 +3880,7 @@ def test_matmul_axes_out_1D(self, axes, b_shape, out_shape):
38923880 "dtype2" , get_all_dtypes (no_bool = True , no_none = True )
38933881 )
38943882 @pytest .mark .parametrize (
3895- "shape_pair " ,
3883+ "shape1, shape2 " ,
38963884 [
38973885 ((2 , 4 ), (4 , 3 )),
38983886 ((4 , 2 , 3 ), (4 , 3 , 5 )),
@@ -3904,11 +3892,9 @@ def test_matmul_axes_out_1D(self, axes, b_shape, out_shape):
39043892 "((6, 7, 4, 3), (6, 7, 3, 5))" ,
39053893 ],
39063894 )
3907- def test_matmul_dtype_matrix_inout (self , dtype1 , dtype2 , shape_pair ):
3908- shape1 , shape2 = shape_pair
3895+ def test_matmul_dtype_matrix_inout (self , dtype1 , dtype2 , shape1 , shape2 ):
39093896 a1 = numpy .arange (numpy .prod (shape1 ), dtype = dtype1 ).reshape (shape1 )
39103897 a2 = numpy .arange (numpy .prod (shape2 ), dtype = dtype1 ).reshape (shape2 )
3911-
39123898 b1 = dpnp .asarray (a1 )
39133899 b2 = dpnp .asarray (a2 )
39143900
@@ -3923,7 +3909,7 @@ def test_matmul_dtype_matrix_inout(self, dtype1, dtype2, shape_pair):
39233909 @pytest .mark .parametrize ("dtype1" , get_all_dtypes (no_bool = True ))
39243910 @pytest .mark .parametrize ("dtype2" , get_all_dtypes (no_bool = True ))
39253911 @pytest .mark .parametrize (
3926- "shape_pair " ,
3912+ "shape1, shape2 " ,
39273913 [
39283914 ((2 , 4 ), (4 , 3 )),
39293915 ((4 , 2 , 3 ), (4 , 3 , 5 )),
@@ -3935,11 +3921,9 @@ def test_matmul_dtype_matrix_inout(self, dtype1, dtype2, shape_pair):
39353921 "((6, 7, 4, 3), (6, 7, 3, 5))" ,
39363922 ],
39373923 )
3938- def test_matmul_dtype_matrix_inputs (self , dtype1 , dtype2 , shape_pair ):
3939- shape1 , shape2 = shape_pair
3924+ def test_matmul_dtype_matrix_inputs (self , dtype1 , dtype2 , shape1 , shape2 ):
39403925 a1 = numpy .arange (numpy .prod (shape1 ), dtype = dtype1 ).reshape (shape1 )
39413926 a2 = numpy .arange (numpy .prod (shape2 ), dtype = dtype2 ).reshape (shape2 )
3942-
39433927 b1 = dpnp .asarray (a1 )
39443928 b2 = dpnp .asarray (a2 )
39453929
@@ -3951,7 +3935,7 @@ def test_matmul_dtype_matrix_inputs(self, dtype1, dtype2, shape_pair):
39513935 @pytest .mark .parametrize ("order2" , ["C" , "F" , "A" ])
39523936 @pytest .mark .parametrize ("order" , ["C" , "F" , "K" , "A" ])
39533937 @pytest .mark .parametrize (
3954- "shape_pair " ,
3938+ "shape1, shape2 " ,
39553939 [
39563940 ((2 , 4 ), (4 , 3 )),
39573941 ((4 , 2 , 3 ), (4 , 3 , 5 )),
@@ -3963,21 +3947,20 @@ def test_matmul_dtype_matrix_inputs(self, dtype1, dtype2, shape_pair):
39633947 "((6, 7, 4, 3), (6, 7, 3, 5))" ,
39643948 ],
39653949 )
3966- def test_matmul_order (self , order1 , order2 , order , shape_pair ):
3967- shape1 , shape2 = shape_pair
3950+ def test_matmul_order (self , order1 , order2 , order , shape1 , shape2 ):
39683951 a1 = numpy .arange (numpy .prod (shape1 )).reshape (shape1 , order = order1 )
39693952 a2 = numpy .arange (numpy .prod (shape2 )).reshape (shape2 , order = order2 )
3970-
39713953 b1 = dpnp .asarray (a1 )
39723954 b2 = dpnp .asarray (a2 )
39733955
39743956 result = dpnp .matmul (b1 , b2 , order = order )
39753957 expected = numpy .matmul (a1 , a2 , order = order )
3976- # For the special case of shape_pair == (( 6, 7, 4, 3), (6, 7, 3, 5) )
3977- # and order1 == "F" and order2 = = "F", NumPy result is not c-contiguous
3958+ # For the special case of shape1 = ( 6, 7, 4, 3), shape2 = (6, 7, 3, 5)
3959+ # and order1 = "F" and order2 = "F", NumPy result is not c-contiguous
39783960 # nor f-contiguous, while dpnp (and cupy) results are c-contiguous
39793961 if not (
3980- shape_pair == ((6 , 7 , 4 , 3 ), (6 , 7 , 3 , 5 ))
3962+ shape1 == (6 , 7 , 4 , 3 )
3963+ and shape2 == (6 , 7 , 3 , 5 )
39813964 and order1 == "F"
39823965 and order2 == "F"
39833966 and order == "K"
@@ -4253,15 +4236,14 @@ def test_matmul_out_0D(self, out_shape):
42534236
42544237 @testing .slow
42554238 @pytest .mark .parametrize (
4256- "shape_pair " ,
4239+ "shape1, shape2 " ,
42574240 [
42584241 ((5000 , 5000 , 2 , 2 ), (5000 , 5000 , 2 , 2 )),
42594242 ((2 , 2 ), (5000 , 5000 , 2 , 2 )),
42604243 ((5000 , 5000 , 2 , 2 ), (2 , 2 )),
42614244 ],
42624245 )
4263- def test_matmul_large (self , shape_pair ):
4264- shape1 , shape2 = shape_pair
4246+ def test_matmul_large (self , shape1 , shape2 ):
42654247 size1 = numpy .prod (shape1 , dtype = int )
42664248 size2 = numpy .prod (shape2 , dtype = int )
42674249 a = numpy .array (numpy .random .uniform (- 5 , 5 , size1 )).reshape (shape1 )
0 commit comments