@@ -150,11 +150,7 @@ class TestCholesky:
150150 [[[7 , 2 ], [2 , 7 ]], [[8 , 3 ], [3 , 8 ]]],
151151 ],
152152 ],
153- ids = [
154- "2D_array" ,
155- "3D_array" ,
156- "4D_array" ,
157- ],
153+ ids = ["2D_array" , "3D_array" , "4D_array" ],
158154 )
159155 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
160156 def test_cholesky (self , array , dtype ):
@@ -174,11 +170,7 @@ def test_cholesky(self, array, dtype):
174170 [[[7 , 2 ], [2 , 7 ]], [[8 , 3 ], [3 , 8 ]]],
175171 ],
176172 ],
177- ids = [
178- "2D_array" ,
179- "3D_array" ,
180- "4D_array" ,
181- ],
173+ ids = ["2D_array" , "3D_array" , "4D_array" ],
182174 )
183175 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
184176 def test_cholesky_upper (self , array , dtype ):
@@ -221,11 +213,7 @@ def test_cholesky_upper(self, array, dtype):
221213 [[[7 , 2 ], [2 , 7 ]], [[8 , 3 ], [3 , 8 ]]],
222214 ],
223215 ],
224- ids = [
225- "2D_array" ,
226- "3D_array" ,
227- "4D_array" ,
228- ],
216+ ids = ["2D_array" , "3D_array" , "4D_array" ],
229217 )
230218 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
231219 def test_cholesky_upper_numpy (self , array , dtype ):
@@ -260,16 +248,8 @@ def test_cholesky_strides(self):
260248
261249 @pytest .mark .parametrize (
262250 "shape" ,
263- [
264- (0 , 0 ),
265- (3 , 0 , 0 ),
266- (0 , 2 , 2 ),
267- ],
268- ids = [
269- "(0, 0)" ,
270- "(3, 0, 0)" ,
271- "(0, 2, 2)" ,
272- ],
251+ [(0 , 0 ), (3 , 0 , 0 ), (0 , 2 , 2 )],
252+ ids = ["(0, 0)" , "(3, 0, 0)" , "(0, 2, 2)" ],
273253 )
274254 def test_cholesky_empty (self , shape ):
275255 a = numpy .empty (shape )
@@ -322,7 +302,7 @@ def test_cond_empty(self, shape, p):
322302 "p" , [None , - dpnp .inf , - 2 , - 1 , 1 , 2 , dpnp .inf , "fro" ]
323303 )
324304 def test_cond (self , dtype , shape , p ):
325- a = generate_random_numpy_array (shape , dtype , low = - 5 , high = 5 )
305+ a = generate_random_numpy_array (shape , dtype )
326306 ia = dpnp .array (a )
327307
328308 result = dpnp .linalg .cond (ia , p = p )
@@ -342,7 +322,7 @@ def test_cond_bool(self, p):
342322
343323 @pytest .mark .parametrize ("p" , [- dpnp .inf , - 1 , 1 , dpnp .inf , "fro" ])
344324 def test_cond_nan_input (self , p ):
345- a = generate_random_numpy_array ((3 , 3 ), low = - 10 , high = 10 )
325+ a = generate_random_numpy_array ((3 , 3 ))
346326 a [1 , 1 ] = numpy .nan
347327 ia = dpnp .array (a )
348328
@@ -354,7 +334,7 @@ def test_cond_nan_input(self, p):
354334 "p" , [None , - dpnp .inf , - 2 , - 1 , 1 , 2 , dpnp .inf , "fro" ]
355335 )
356336 def test_cond_nan (self , p ):
357- a = generate_random_numpy_array ((2 , 2 , 2 , 2 ), low = - 5 , high = 5 )
337+ a = generate_random_numpy_array ((2 , 2 , 2 , 2 ))
358338 a [0 , 0 ] = 0
359339 a [1 , 1 ] = 0
360340 ia = dpnp .array (a )
@@ -405,11 +385,7 @@ class TestDet:
405385 [[[1 , 3 ], [3 , 1 ]], [[0 , 1 ], [1 , 3 ]]],
406386 ],
407387 ],
408- ids = [
409- "2D_array" ,
410- "3D_array" ,
411- "4D_array" ,
412- ],
388+ ids = ["2D_array" , "3D_array" , "4D_array" ],
413389 )
414390 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
415391 def test_det (self , array , dtype ):
@@ -523,35 +499,21 @@ def assert_eigen_decomposition(self, a, w, v, rtol=1e-5, atol=1e-5):
523499 a [i ].dot (v [i ]), w [i ] * v [i ], rtol = rtol , atol = atol
524500 )
525501
526- @pytest .mark .parametrize (
527- "func" ,
528- [
529- "eig" ,
530- "eigvals" ,
531- "eigh" ,
532- "eigvalsh" ,
533- ],
534- )
502+ @pytest .mark .parametrize ("func" , ["eig" , "eigvals" , "eigh" , "eigvalsh" ])
535503 @pytest .mark .parametrize (
536504 "shape" ,
537505 [(2 , 2 ), (2 , 3 , 3 ), (2 , 2 , 3 , 3 )],
538- ids = ["(2,2)" , "(2,3, 3)" , "(2,2,3, 3)" ],
506+ ids = ["(2, 2)" , "(2, 3, 3)" , "(2, 2, 3, 3)" ],
539507 )
540508 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
541- @pytest .mark .parametrize (
542- "order" ,
543- [
544- "C" ,
545- "F" ,
546- ],
547- )
509+ @pytest .mark .parametrize ("order" , ["C" , "F" ])
548510 def test_eigenvalues (self , func , shape , dtype , order ):
549511 # Set a `hermitian` flag for generate_random_numpy_array() to
550512 # get a symmetric array for eigh() and eigvalsh() or
551513 # non-symmetric for eig() and eigvals()
552514 is_hermitian = func in ("eigh, eigvalsh" )
553515 a = generate_random_numpy_array (
554- shape , dtype , hermitian = is_hermitian , seed_value = 81
516+ shape , dtype , hermitian = is_hermitian , seed_value = 81 , low = - 2 , high = 2
555517 )
556518 a_order = numpy .array (a , order = order )
557519 a_dp = dpnp .array (a , order = order )
@@ -574,13 +536,7 @@ def test_eigenvalues(self, func, shape, dtype, order):
574536 assert_dtype_allclose (w_dp , w )
575537
576538 # eigh() and eigvalsh() are tested in cupy tests
577- @pytest .mark .parametrize (
578- "func" ,
579- [
580- "eig" ,
581- "eigvals" ,
582- ],
583- )
539+ @pytest .mark .parametrize ("func" , ["eig" , "eigvals" ])
584540 @pytest .mark .parametrize (
585541 "shape" ,
586542 [(0 , 0 ), (2 , 0 , 0 ), (0 , 3 , 3 )],
@@ -603,15 +559,7 @@ def test_eigenvalue_empty(self, func, shape, dtype):
603559
604560 assert_dtype_allclose (w_dp , w )
605561
606- @pytest .mark .parametrize (
607- "func" ,
608- [
609- "eig" ,
610- "eigvals" ,
611- "eigh" ,
612- "eigvalsh" ,
613- ],
614- )
562+ @pytest .mark .parametrize ("func" , ["eig" , "eigvals" , "eigh" , "eigvalsh" ])
615563 def test_eigenvalue_errors (self , func ):
616564 a_dp = dpnp .array ([[1 , 3 ], [3 , 2 ]], dtype = "float32" )
617565
@@ -1737,11 +1685,7 @@ class TestInv:
17371685 [[[1 , 3 ], [3 , 1 ]], [[0 , 1 ], [1 , 3 ]]],
17381686 ],
17391687 ],
1740- ids = [
1741- "2D_array" ,
1742- "3D_array" ,
1743- "4D_array" ,
1744- ],
1688+ ids = ["2D_array" , "3D_array" , "4D_array" ],
17451689 )
17461690 @pytest .mark .parametrize ("dtype" , get_all_dtypes (no_bool = True ))
17471691 def test_inv (self , array , dtype ):
@@ -1776,16 +1720,8 @@ def test_inv_strides(self):
17761720
17771721 @pytest .mark .parametrize (
17781722 "shape" ,
1779- [
1780- (0 , 0 ),
1781- (3 , 0 , 0 ),
1782- (0 , 2 , 2 ),
1783- ],
1784- ids = [
1785- "(0, 0)" ,
1786- "(3, 0, 0)" ,
1787- "(0, 2, 2)" ,
1788- ],
1723+ [(0 , 0 ), (3 , 0 , 0 ), (0 , 2 , 2 )],
1724+ ids = ["(0, 0)" , "(3, 0, 0)" , "(0, 2, 2)" ],
17891725 )
17901726 def test_inv_empty (self , shape ):
17911727 a = numpy .empty (shape )
@@ -1882,8 +1818,8 @@ def test_lstsq(self, a_shape, b_shape, dtype):
18821818 @pytest .mark .parametrize ("a_dtype" , get_all_dtypes ())
18831819 @pytest .mark .parametrize ("b_dtype" , get_all_dtypes ())
18841820 def test_lstsq_diff_type (self , a_dtype , b_dtype ):
1885- a_np = generate_random_numpy_array ((2 , 2 ), a_dtype , low = - 5 , high = 5 )
1886- b_np = generate_random_numpy_array (2 , b_dtype , low = - 5 , high = 5 )
1821+ a_np = generate_random_numpy_array ((2 , 2 ), a_dtype )
1822+ b_np = generate_random_numpy_array (2 , b_dtype )
18871823 a_dp = dpnp .array (a_np )
18881824 b_dp = dpnp .array (b_np )
18891825
@@ -2030,11 +1966,7 @@ def test_matrix_rank_hermitian(self, data, dtype):
20301966 (numpy .array (0.99e-6 ), numpy .array (1.01e-6 )),
20311967 (numpy .array ([0.99e-6 ]), numpy .array ([1.01e-6 ])),
20321968 ],
2033- ids = [
2034- "float" ,
2035- "0-D array" ,
2036- "1-D array" ,
2037- ],
1969+ ids = ["float" , "0-D array" , "1-D array" ],
20381970 )
20391971 def test_matrix_rank_tolerance (self , high_tol , low_tol ):
20401972 a = numpy .eye (4 )
@@ -2209,7 +2141,7 @@ def test_norm_0D(self, ord, axis):
22092141 @pytest .mark .parametrize ("axis" , [0 , None ])
22102142 @pytest .mark .parametrize ("keepdims" , [True , False ])
22112143 def test_norm_1D (self , dtype , ord , axis , keepdims ):
2212- a = generate_random_numpy_array (10 , dtype , low = - 5 , high = 5 )
2144+ a = generate_random_numpy_array (10 , dtype )
22132145 ia = dpnp .array (a )
22142146
22152147 result = dpnp .linalg .norm (ia , ord = ord , axis = axis , keepdims = keepdims )
@@ -2226,7 +2158,7 @@ def test_norm_1D(self, dtype, ord, axis, keepdims):
22262158 )
22272159 @pytest .mark .parametrize ("keepdims" , [True , False ])
22282160 def test_norm_2D (self , dtype , ord , axis , keepdims ):
2229- a = generate_random_numpy_array ((3 , 5 ), dtype , low = - 5 , high = 5 )
2161+ a = generate_random_numpy_array ((3 , 5 ), dtype )
22302162 ia = dpnp .array (a )
22312163 if (axis in [- 1 , 0 , 1 ] and ord in ["nuc" , "fro" ]) or (
22322164 (isinstance (axis , tuple ) or axis is None ) and ord == 3
@@ -2253,7 +2185,7 @@ def test_norm_2D(self, dtype, ord, axis, keepdims):
22532185 )
22542186 @pytest .mark .parametrize ("keepdims" , [True , False ])
22552187 def test_norm_ND (self , dtype , ord , axis , keepdims ):
2256- a = generate_random_numpy_array ((2 , 3 , 4 , 5 ), dtype , low = - 5 , high = 5 )
2188+ a = generate_random_numpy_array ((2 , 3 , 4 , 5 ), dtype )
22572189 ia = dpnp .array (a )
22582190 if (axis in [- 1 , 0 , 1 ] and ord in ["nuc" , "fro" ]) or (
22592191 isinstance (axis , tuple ) and ord == 3
@@ -2284,7 +2216,7 @@ def test_norm_ND(self, dtype, ord, axis, keepdims):
22842216 )
22852217 @pytest .mark .parametrize ("keepdims" , [True , False ])
22862218 def test_norm_usm_ndarray (self , dtype , ord , axis , keepdims ):
2287- a = generate_random_numpy_array ((2 , 3 , 4 , 5 ), dtype , low = - 5 , high = 5 )
2219+ a = generate_random_numpy_array ((2 , 3 , 4 , 5 ), dtype )
22882220 ia = dpt .asarray (a )
22892221 if (axis in [- 1 , 0 , 1 ] and ord in ["nuc" , "fro" ]) or (
22902222 isinstance (axis , tuple ) and ord == 3
@@ -2361,7 +2293,7 @@ def test_norm_strided_ND(self, axis, stride):
23612293 )
23622294 @pytest .mark .parametrize ("keepdims" , [True , False ])
23632295 def test_matrix_norm (self , ord , keepdims ):
2364- a = generate_random_numpy_array ((3 , 5 ), low = - 5 , high = 5 )
2296+ a = generate_random_numpy_array ((3 , 5 ))
23652297 ia = dpnp .array (a )
23662298
23672299 result = dpnp .linalg .matrix_norm (ia , ord = ord , keepdims = keepdims )
@@ -2387,7 +2319,7 @@ def test_vector_norm_0D(self, ord):
23872319 @pytest .mark .parametrize ("axis" , [0 , None ])
23882320 @pytest .mark .parametrize ("keepdims" , [True , False ])
23892321 def test_vector_norm_1D (self , ord , axis , keepdims ):
2390- a = generate_random_numpy_array (10 , low = - 5 , high = 5 )
2322+ a = generate_random_numpy_array (10 )
23912323 ia = dpnp .array (a )
23922324
23932325 result = dpnp .linalg .vector_norm (
@@ -2588,8 +2520,8 @@ def test_solve_nrhs_greater_n(self, dtype):
25882520 @pytest .mark .parametrize ("a_dtype" , get_all_dtypes (no_bool = True ))
25892521 @pytest .mark .parametrize ("b_dtype" , get_all_dtypes (no_bool = True ))
25902522 def test_solve_diff_type (self , a_dtype , b_dtype ):
2591- a_np = generate_random_numpy_array ((2 , 2 ), a_dtype , low = - 5 , high = 5 )
2592- b_np = generate_random_numpy_array (2 , b_dtype , low = - 5 , high = 5 )
2523+ a_np = generate_random_numpy_array ((2 , 2 ), a_dtype )
2524+ b_np = generate_random_numpy_array (2 , b_dtype )
25932525 a_dp = dpnp .array (a_np )
25942526 b_dp = dpnp .array (b_np )
25952527
@@ -2877,9 +2809,7 @@ def test_svd(self, dtype, shape):
28772809 @pytest .mark .parametrize ("dtype" , get_float_complex_dtypes ())
28782810 @pytest .mark .parametrize ("compute_vt" , [True , False ])
28792811 @pytest .mark .parametrize (
2880- "shape" ,
2881- [(2 , 2 ), (16 , 16 )],
2882- ids = ["(2, 2)" , "(16, 16)" ],
2812+ "shape" , [(2 , 2 ), (16 , 16 )], ids = ["(2, 2)" , "(16, 16)" ]
28832813 )
28842814 def test_svd_hermitian (self , dtype , compute_vt , shape ):
28852815 # Set seed_value=81 to prevent
@@ -3025,15 +2955,13 @@ def test_pinv(self, dtype, shape):
30252955
30262956 @pytest .mark .parametrize ("dtype" , get_float_complex_dtypes ())
30272957 @pytest .mark .parametrize (
3028- "shape" ,
3029- [(2 , 2 ), (16 , 16 )],
3030- ids = ["(2, 2)" , "(16, 16)" ],
2958+ "shape" , [(2 , 2 ), (16 , 16 )], ids = ["(2, 2)" , "(16, 16)" ]
30312959 )
30322960 def test_pinv_hermitian (self , dtype , shape ):
30332961 # Set seed_value=70 to prevent
30342962 # random generation of the input singular matrix
30352963 a = generate_random_numpy_array (
3036- shape , dtype , hermitian = True , seed_value = 70
2964+ shape , dtype , hermitian = True , seed_value = 70 , low = - 2 , high = 2
30372965 )
30382966 a_dp = dpnp .array (a )
30392967
@@ -3133,14 +3061,8 @@ class TestTensorinv:
31333061 @pytest .mark .parametrize ("dtype" , get_all_dtypes ())
31343062 @pytest .mark .parametrize (
31353063 "shape, ind" ,
3136- [
3137- ((4 , 6 , 8 , 3 ), 2 ),
3138- ((24 , 8 , 3 ), 1 ),
3139- ],
3140- ids = [
3141- "(4, 6, 8, 3)" ,
3142- "(24, 8, 3)" ,
3143- ],
3064+ [((4 , 6 , 8 , 3 ), 2 ), ((24 , 8 , 3 ), 1 )],
3065+ ids = ["(4, 6, 8, 3)" , "(24, 8, 3)" ],
31443066 )
31453067 def test_tensorinv (self , dtype , shape , ind ):
31463068 a = numpy .eye (24 , dtype = dtype ).reshape (shape )
@@ -3173,11 +3095,7 @@ class TestTensorsolve:
31733095 @pytest .mark .parametrize (
31743096 "axes" ,
31753097 [None , (1 ,), (2 ,)],
3176- ids = [
3177- "None" ,
3178- "(1,)" ,
3179- "(2,)" ,
3180- ],
3098+ ids = ["None" , "(1,)" , "(2,)" ],
31813099 )
31823100 def test_tensorsolve_axes (self , dtype , axes ):
31833101 a = numpy .eye (12 ).reshape (12 , 3 , 4 ).astype (dtype )
0 commit comments