|
| 1 | +//***************************************************************************** |
| 2 | +// Copyright (c) 2025, Intel Corporation |
| 3 | +// All rights reserved. |
| 4 | +// |
| 5 | +// Redistribution and use in source and binary forms, with or without |
| 6 | +// modification, are permitted provided that the following conditions are met: |
| 7 | +// - Redistributions of source code must retain the above copyright notice, |
| 8 | +// this list of conditions and the following disclaimer. |
| 9 | +// - Redistributions in binary form must reproduce the above copyright notice, |
| 10 | +// this list of conditions and the following disclaimer in the documentation |
| 11 | +// and/or other materials provided with the distribution. |
| 12 | +// |
| 13 | +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 14 | +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 16 | +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 17 | +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | +// THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | +//***************************************************************************** |
| 25 | + |
| 26 | +#include <cstddef> |
| 27 | +#include <stdexcept> |
| 28 | +#include <vector> |
| 29 | + |
| 30 | +#include <pybind11/pybind11.h> |
| 31 | +#include <sycl/sycl.hpp> |
| 32 | + |
| 33 | +// dpctl tensor headers |
| 34 | +#include "utils/memory_overlap.hpp" |
| 35 | +#include "utils/sycl_alloc_utils.hpp" |
| 36 | +#include "utils/type_dispatch.hpp" |
| 37 | +#include "utils/type_utils.hpp" |
| 38 | + |
| 39 | +#include "getrs.hpp" |
| 40 | +#include "linalg_exceptions.hpp" |
| 41 | +#include "types_matrix.hpp" |
| 42 | + |
| 43 | +namespace dpnp::extensions::lapack |
| 44 | +{ |
| 45 | +namespace mkl_lapack = oneapi::mkl::lapack; |
| 46 | +namespace py = pybind11; |
| 47 | +namespace type_utils = dpctl::tensor::type_utils; |
| 48 | +namespace td_ns = dpctl::tensor::type_dispatch; |
| 49 | + |
| 50 | +typedef sycl::event (*getrs_batch_impl_fn_ptr_t)( |
| 51 | + sycl::queue &, |
| 52 | + oneapi::mkl::transpose, // trans |
| 53 | + const std::int64_t, // n |
| 54 | + const std::int64_t, // nrhs |
| 55 | + char *, // a |
| 56 | + std::int64_t, // lda |
| 57 | + std::int64_t, // stride_a |
| 58 | + std::int64_t *, // ipiv |
| 59 | + std::int64_t, // stride_ipiv |
| 60 | + char *, // b |
| 61 | + std::int64_t, // ldb |
| 62 | + std::int64_t, // stride_b |
| 63 | + std::int64_t, // batch_size |
| 64 | + std::vector<sycl::event> &, |
| 65 | + const std::vector<sycl::event> &); |
| 66 | + |
| 67 | +static getrs_batch_impl_fn_ptr_t getrs_batch_dispatch_vector[td_ns::num_types]; |
| 68 | + |
| 69 | +template <typename T> |
| 70 | +static sycl::event getrs_batch_impl(sycl::queue &exec_q, |
| 71 | + oneapi::mkl::transpose trans, |
| 72 | + const std::int64_t n, |
| 73 | + const std::int64_t nrhs, |
| 74 | + char *in_a, |
| 75 | + std::int64_t lda, |
| 76 | + std::int64_t stride_a, |
| 77 | + std::int64_t *ipiv, |
| 78 | + std::int64_t stride_ipiv, |
| 79 | + char *in_b, |
| 80 | + std::int64_t ldb, |
| 81 | + std::int64_t stride_b, |
| 82 | + std::int64_t batch_size, |
| 83 | + std::vector<sycl::event> &host_task_events, |
| 84 | + const std::vector<sycl::event> &depends) |
| 85 | +{ |
| 86 | + type_utils::validate_type_for_device<T>(exec_q); |
| 87 | + |
| 88 | + T *a = reinterpret_cast<T *>(in_a); |
| 89 | + T *b = reinterpret_cast<T *>(in_b); |
| 90 | + |
| 91 | + const std::int64_t scratchpad_size = |
| 92 | + mkl_lapack::getrs_batch_scratchpad_size<T>(exec_q, trans, n, nrhs, lda, |
| 93 | + stride_a, stride_ipiv, ldb, |
| 94 | + stride_b, batch_size); |
| 95 | + T *scratchpad = nullptr; |
| 96 | + |
| 97 | + std::stringstream error_msg; |
| 98 | + std::int64_t info = 0; |
| 99 | + bool is_exception_caught = false; |
| 100 | + |
| 101 | + sycl::event getrs_batch_event; |
| 102 | + try { |
| 103 | + scratchpad = sycl::malloc_device<T>(scratchpad_size, exec_q); |
| 104 | + |
| 105 | + getrs_batch_event = mkl_lapack::getrs_batch( |
| 106 | + exec_q, |
| 107 | + trans, // Specifies the operation: whether or not to transpose |
| 108 | + // matrix A. Can be 'N' for no transpose, 'T' for transpose, |
| 109 | + // and 'C' for conjugate transpose. |
| 110 | + n, // The order of the square matrix A |
| 111 | + // and the number of rows in matrix B (0 ≤ n). |
| 112 | + // It must be a non-negative integer. |
| 113 | + nrhs, // The number of right-hand sides, |
| 114 | + // i.e., the number of columns in matrix B (0 ≤ nrhs). |
| 115 | + a, // Pointer to the square matrix A (n x n). |
| 116 | + lda, // The leading dimension of matrix A, must be at least max(1, |
| 117 | + // n). It must be at least max(1, n). |
| 118 | + stride_a, // Stride between consecutive A matrices in the batch. |
| 119 | + ipiv, // Pointer to the output array of pivot indices that were used |
| 120 | + // during factorization (n, ). |
| 121 | + stride_ipiv, // Stride between consecutive pivot arrays in the |
| 122 | + // batch. |
| 123 | + b, // Pointer to the matrix B of right-hand sides (ldb, nrhs). |
| 124 | + ldb, // The leading dimension of matrix B, must be at least max(1, |
| 125 | + // n). |
| 126 | + stride_b, // Stride between consecutive B matrices in the batch. |
| 127 | + batch_size, // Total number of matrices in the batch. |
| 128 | + scratchpad, // Pointer to scratchpad memory to be used by MKL |
| 129 | + // routine for storing intermediate results. |
| 130 | + scratchpad_size, depends); |
| 131 | + } catch (mkl_lapack::exception const &e) { |
| 132 | + is_exception_caught = true; |
| 133 | + info = e.info(); |
| 134 | + |
| 135 | + if (info < 0) { |
| 136 | + error_msg << "Parameter number " << -info |
| 137 | + << " had an illegal value."; |
| 138 | + } |
| 139 | + else if (info == scratchpad_size && e.detail() != 0) { |
| 140 | + error_msg |
| 141 | + << "Insufficient scratchpad size. Required size is at least " |
| 142 | + << e.detail(); |
| 143 | + } |
| 144 | + else if (info > 0) { |
| 145 | + is_exception_caught = false; |
| 146 | + if (scratchpad != nullptr) { |
| 147 | + dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, |
| 148 | + exec_q); |
| 149 | + } |
| 150 | + throw LinAlgError("The solve could not be completed."); |
| 151 | + } |
| 152 | + else { |
| 153 | + error_msg << "Unexpected MKL exception caught during getrs() " |
| 154 | + "call:\nreason: " |
| 155 | + << e.what() << "\ninfo: " << e.info(); |
| 156 | + } |
| 157 | + } catch (sycl::exception const &e) { |
| 158 | + is_exception_caught = true; |
| 159 | + error_msg << "Unexpected SYCL exception caught during getrs() call:\n" |
| 160 | + << e.what(); |
| 161 | + } |
| 162 | + |
| 163 | + if (is_exception_caught) // an unexpected error occurs |
| 164 | + { |
| 165 | + if (scratchpad != nullptr) { |
| 166 | + dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, exec_q); |
| 167 | + } |
| 168 | + |
| 169 | + throw std::runtime_error(error_msg.str()); |
| 170 | + } |
| 171 | + |
| 172 | + sycl::event clean_up_event = exec_q.submit([&](sycl::handler &cgh) { |
| 173 | + cgh.depends_on(getrs_batch_event); |
| 174 | + auto ctx = exec_q.get_context(); |
| 175 | + cgh.host_task([ctx, scratchpad]() { |
| 176 | + dpctl::tensor::alloc_utils::sycl_free_noexcept(scratchpad, ctx); |
| 177 | + }); |
| 178 | + }); |
| 179 | + host_task_events.push_back(clean_up_event); |
| 180 | + return getrs_batch_event; |
| 181 | +} |
| 182 | + |
| 183 | +std::pair<sycl::event, sycl::event> |
| 184 | + getrs_batch(sycl::queue &exec_q, |
| 185 | + const dpctl::tensor::usm_ndarray &a_array, |
| 186 | + const dpctl::tensor::usm_ndarray &ipiv_array, |
| 187 | + const dpctl::tensor::usm_ndarray &b_array, |
| 188 | + oneapi::mkl::transpose trans, |
| 189 | + std::int64_t n, |
| 190 | + std::int64_t nrhs, |
| 191 | + std::int64_t stride_a, |
| 192 | + std::int64_t stride_ipiv, |
| 193 | + std::int64_t stride_b, |
| 194 | + std::int64_t batch_size, |
| 195 | + const std::vector<sycl::event> &depends) |
| 196 | +{ |
| 197 | + const int a_array_nd = a_array.get_ndim(); |
| 198 | + const int b_array_nd = b_array.get_ndim(); |
| 199 | + const int ipiv_array_nd = ipiv_array.get_ndim(); |
| 200 | + |
| 201 | + if (a_array_nd < 3) { |
| 202 | + throw py::value_error( |
| 203 | + "The LU-factorized array has ndim=" + std::to_string(a_array_nd) + |
| 204 | + ", but an array with ndim >= 3 is expected"); |
| 205 | + } |
| 206 | + if (b_array_nd < 3) { |
| 207 | + throw py::value_error("The right-hand sides array has ndim=" + |
| 208 | + std::to_string(b_array_nd) + |
| 209 | + ", but an array with ndim >= 3 is expected"); |
| 210 | + } |
| 211 | + if (ipiv_array_nd < 1) { |
| 212 | + throw py::value_error("The array of pivot indices has ndim=" + |
| 213 | + std::to_string(ipiv_array_nd) + |
| 214 | + ", but an array with ndim >= 2 is expected"); |
| 215 | + } |
| 216 | + |
| 217 | + if (ipiv_array_nd != a_array_nd - 1) { |
| 218 | + throw py::value_error( |
| 219 | + "The array of pivot indices has ndim=" + |
| 220 | + std::to_string(ipiv_array_nd) + |
| 221 | + ", but an array with ndim=" + std::to_string(a_array_nd - 1) + |
| 222 | + " is expected to match LU batch dimensions"); |
| 223 | + } |
| 224 | + |
| 225 | + const py::ssize_t *a_array_shape = a_array.get_shape_raw(); |
| 226 | + |
| 227 | + if (a_array_shape[a_array_nd - 1] != a_array_shape[a_array_nd - 2]) { |
| 228 | + throw py::value_error( |
| 229 | + "The last two dimensions of the LU array must be square," |
| 230 | + " but got a shape of (" + |
| 231 | + std::to_string(a_array_shape[a_array_nd - 1]) + ", " + |
| 232 | + std::to_string(a_array_shape[a_array_nd - 2]) + ")."); |
| 233 | + } |
| 234 | + |
| 235 | + // check compatibility of execution queue and allocation queue |
| 236 | + if (!dpctl::utils::queues_are_compatible(exec_q, |
| 237 | + {a_array, b_array, ipiv_array})) |
| 238 | + { |
| 239 | + throw py::value_error( |
| 240 | + "Execution queue is not compatible with allocation queues"); |
| 241 | + } |
| 242 | + |
| 243 | + auto const &overlap = dpctl::tensor::overlap::MemoryOverlap(); |
| 244 | + if (overlap(a_array, b_array)) { |
| 245 | + throw py::value_error("The LU-factorized and right-hand sides arrays " |
| 246 | + "are overlapping segments of memory"); |
| 247 | + } |
| 248 | + |
| 249 | + bool is_a_array_c_contig = a_array.is_c_contiguous(); |
| 250 | + bool is_a_array_f_contig = a_array.is_f_contiguous(); |
| 251 | + bool is_b_array_f_contig = b_array.is_f_contiguous(); |
| 252 | + bool is_ipiv_array_c_contig = ipiv_array.is_c_contiguous(); |
| 253 | + bool is_ipiv_array_f_contig = ipiv_array.is_f_contiguous(); |
| 254 | + if (!is_a_array_c_contig && !is_a_array_f_contig) { |
| 255 | + throw py::value_error("The LU-factorized array " |
| 256 | + "must be either C-contiguous " |
| 257 | + "or F-contiguous"); |
| 258 | + } |
| 259 | + if (!is_b_array_f_contig) { |
| 260 | + throw py::value_error("The right-hand sides array " |
| 261 | + "must be F-contiguous"); |
| 262 | + } |
| 263 | + if (!is_ipiv_array_c_contig && !is_ipiv_array_f_contig) { |
| 264 | + throw py::value_error("The array of pivot indices " |
| 265 | + "must be contiguous"); |
| 266 | + } |
| 267 | + |
| 268 | + auto array_types = td_ns::usm_ndarray_types(); |
| 269 | + int a_array_type_id = |
| 270 | + array_types.typenum_to_lookup_id(a_array.get_typenum()); |
| 271 | + int b_array_type_id = |
| 272 | + array_types.typenum_to_lookup_id(b_array.get_typenum()); |
| 273 | + |
| 274 | + if (a_array_type_id != b_array_type_id) { |
| 275 | + throw py::value_error("The types of the LU-factorized and " |
| 276 | + "right-hand sides arrays are mismatched"); |
| 277 | + } |
| 278 | + |
| 279 | + getrs_batch_impl_fn_ptr_t getrs_batch_fn = |
| 280 | + getrs_batch_dispatch_vector[a_array_type_id]; |
| 281 | + if (getrs_batch_fn == nullptr) { |
| 282 | + throw py::value_error( |
| 283 | + "No getrs_batch implementation defined for the provided type " |
| 284 | + "of the input matrix."); |
| 285 | + } |
| 286 | + |
| 287 | + auto ipiv_types = td_ns::usm_ndarray_types(); |
| 288 | + int ipiv_array_type_id = |
| 289 | + ipiv_types.typenum_to_lookup_id(ipiv_array.get_typenum()); |
| 290 | + |
| 291 | + if (ipiv_array_type_id != static_cast<int>(td_ns::typenum_t::INT64)) { |
| 292 | + throw py::value_error("The type of 'ipiv_array' must be int64."); |
| 293 | + } |
| 294 | + |
| 295 | + const std::int64_t lda = std::max<size_t>(1UL, n); |
| 296 | + const std::int64_t ldb = std::max<size_t>(1UL, n); |
| 297 | + |
| 298 | + char *a_array_data = a_array.get_data(); |
| 299 | + char *b_array_data = b_array.get_data(); |
| 300 | + char *ipiv_array_data = ipiv_array.get_data(); |
| 301 | + |
| 302 | + std::int64_t *ipiv = reinterpret_cast<std::int64_t *>(ipiv_array_data); |
| 303 | + |
| 304 | + std::vector<sycl::event> host_task_events; |
| 305 | + sycl::event getrs_batch_ev = getrs_batch_fn( |
| 306 | + exec_q, trans, n, nrhs, a_array_data, lda, stride_a, ipiv, stride_ipiv, |
| 307 | + b_array_data, ldb, stride_b, batch_size, host_task_events, depends); |
| 308 | + |
| 309 | + sycl::event args_ev = dpctl::utils::keep_args_alive( |
| 310 | + exec_q, {a_array, b_array, ipiv_array}, host_task_events); |
| 311 | + |
| 312 | + return std::make_pair(args_ev, getrs_batch_ev); |
| 313 | +} |
| 314 | + |
| 315 | +template <typename fnT, typename T> |
| 316 | +struct GetrsBatchContigFactory |
| 317 | +{ |
| 318 | + fnT get() |
| 319 | + { |
| 320 | + if constexpr (types::GetrsBatchTypePairSupportFactory<T>::is_defined) { |
| 321 | + return getrs_batch_impl<T>; |
| 322 | + } |
| 323 | + else { |
| 324 | + return nullptr; |
| 325 | + } |
| 326 | + } |
| 327 | +}; |
| 328 | + |
| 329 | +void init_getrs_batch_dispatch_vector(void) |
| 330 | +{ |
| 331 | + td_ns::DispatchVectorBuilder<getrs_batch_impl_fn_ptr_t, |
| 332 | + GetrsBatchContigFactory, td_ns::num_types> |
| 333 | + contig; |
| 334 | + contig.populate_dispatch_vector(getrs_batch_dispatch_vector); |
| 335 | +} |
| 336 | +} // namespace dpnp::extensions::lapack |
0 commit comments