1414 </ script >
1515
1616 < meta name ="viewport " content ="width=device-width, initial-scale=1.0 " />
17- < title > dpnp.dpnp_iface_arraycreation — Data Parallel Extension for NumPy 0.17.0dev0+72.g91bd1e9ecac documentation</ title >
17+ < title > dpnp.dpnp_iface_arraycreation — Data Parallel Extension for NumPy 0.17.0dev0+73.g8e1f72199c7 documentation</ title >
1818 < link rel ="stylesheet " type ="text/css " href ="../../_static/pygments.css?v=fa44fd50 " />
1919 < link rel ="stylesheet " type ="text/css " href ="../../_static/css/theme.css?v=e59714d7 " />
2020
2121
2222 < script src ="../../_static/jquery.js?v=5d32c60e "> </ script >
2323 < script src ="../../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c "> </ script >
24- < script src ="../../_static/documentation_options.js?v=3d61a4b1 "> </ script >
24+ < script src ="../../_static/documentation_options.js?v=b2fa18af "> </ script >
2525 < script src ="../../_static/doctools.js?v=9a2dae69 "> </ script >
2626 < script src ="../../_static/sphinx_highlight.js?v=dc90522c "> </ script >
2727 < script src ="../../_static/js/theme.js "> </ script >
@@ -467,6 +467,11 @@ <h1>Source code for dpnp.dpnp_iface_arraycreation</h1><div class="highlight"><pr
467467< span class ="sd "> >>> x</ span >
468468< span class ="sd "> array([1, 2, 3])</ span >
469469
470+ < span class ="sd "> Upcasting:</ span >
471+
472+ < span class ="sd "> >>> np.array([1, 2, 3.0])</ span >
473+ < span class ="sd "> array([ 1., 2., 3.])</ span >
474+
470475< span class ="sd "> More than one dimension:</ span >
471476
472477< span class ="sd "> >>> x2 = np.array([[1, 2], [3, 4]])</ span >
@@ -476,6 +481,16 @@ <h1>Source code for dpnp.dpnp_iface_arraycreation</h1><div class="highlight"><pr
476481< span class ="sd "> array([[1, 2],</ span >
477482< span class ="sd "> [3, 4]])</ span >
478483
484+ < span class ="sd "> Minimum dimensions 2:</ span >
485+
486+ < span class ="sd "> >>> np.array([1, 2, 3], ndmin=2)</ span >
487+ < span class ="sd "> array([[1, 2, 3]])</ span >
488+
489+ < span class ="sd "> Type provided:</ span >
490+
491+ < span class ="sd "> >>> np.array([1, 2, 3], dtype=complex)</ span >
492+ < span class ="sd "> array([ 1.+0.j, 2.+0.j, 3.+0.j])</ span >
493+
479494< span class ="sd "> Creating an array on a different device or with a specified usm_type</ span >
480495
481496< span class ="sd "> >>> x = np.array([1, 2, 3]) # default case</ span >
0 commit comments