@@ -22,6 +22,7 @@ class TestPad:
2222 "linear_ramp" : {"end_values" : 0 },
2323 "maximum" : {"stat_length" : None },
2424 "mean" : {"stat_length" : None },
25+ "median" : {"stat_length" : None },
2526 "minimum" : {"stat_length" : None },
2627 "reflect" : {"reflect_type" : "even" },
2728 "symmetric" : {"reflect_type" : "even" },
@@ -303,7 +304,7 @@ def test_linear_ramp_negative_diff(self, dtype, data, end_values):
303304 assert_array_equal (result , expected )
304305
305306 @pytest .mark .parametrize ("pad_width" , [5 , (25 , 20 )])
306- @pytest .mark .parametrize ("mode" , ["maximum" , "minimum" , "mean" ])
307+ @pytest .mark .parametrize ("mode" , ["maximum" , "minimum" , "mean" , "median" ])
307308 @pytest .mark .parametrize ("stat_length" , [10 , (2 , 3 )])
308309 def test_stat_func_1d (self , pad_width , mode , stat_length ):
309310 a_np = numpy .arange (100 )
@@ -315,7 +316,7 @@ def test_stat_func_1d(self, pad_width, mode, stat_length):
315316 assert_array_equal (result , expected )
316317
317318 @pytest .mark .parametrize ("pad_width" , [((1 ,), (2 ,)), ((2 , 3 ), (3 , 2 ))])
318- @pytest .mark .parametrize ("mode" , ["maximum" , "minimum" , "mean" ])
319+ @pytest .mark .parametrize ("mode" , ["maximum" , "minimum" , "mean" , "median" ])
319320 @pytest .mark .parametrize ("stat_length" , [(3 ,), (2 , 3 )])
320321 def test_stat_func_2d (self , pad_width , mode , stat_length ):
321322 a_np = numpy .arange (30 ).reshape (6 , 5 )
@@ -326,7 +327,7 @@ def test_stat_func_2d(self, pad_width, mode, stat_length):
326327 result = dpnp .pad (a_dp , pad_width , mode = mode , stat_length = stat_length )
327328 assert_array_equal (result , expected )
328329
329- @pytest .mark .parametrize ("mode" , ["mean" , "minimum" , "maximum" ])
330+ @pytest .mark .parametrize ("mode" , ["mean" , "minimum" , "maximum" , "median" ])
330331 def test_same_prepend_append (self , mode ):
331332 """Test that appended and prepended values are equal"""
332333 a = dpnp .array ([- 1 , 2 , - 1 ]) + dpnp .array (
@@ -335,14 +336,15 @@ def test_same_prepend_append(self, mode):
335336 result = dpnp .pad (a , (1 , 1 ), mode )
336337 assert_equal (result [0 ], result [- 1 ])
337338
338- def test_mean_with_zero_stat_length (self ):
339+ @pytest .mark .parametrize ("mode" , ["mean" , "median" ])
340+ def test_zero_stat_length_valid (self ):
339341 a_np = numpy .array ([1.0 , 2.0 ])
340342 a_dp = dpnp .array (a_np )
341- expected = numpy .pad (a_np , (1 , 2 ), "mean" )
342- result = dpnp .pad (a_dp , (1 , 2 ), "mean" )
343+ expected = numpy .pad (a_np , (1 , 2 ), mode , stat_length = 0 )
344+ result = dpnp .pad (a_dp , (1 , 2 ), mode , stat_length = 0 )
343345 assert_array_equal (result , expected )
344346
345- @pytest .mark .parametrize ("mode" , ["mean" , "minimum" , "maximum" ])
347+ @pytest .mark .parametrize ("mode" , ["mean" , "minimum" , "maximum" , "median" ])
346348 @pytest .mark .parametrize (
347349 "stat_length" , [- 2 , (- 2 ,), (3 , - 1 ), ((5 , 2 ), (- 2 , 3 )), ((- 4 ,), (2 ,))]
348350 )
0 commit comments