@@ -1355,15 +1355,15 @@ def cumlogsumexp(
13551355)
13561356
13571357
1358- _LOG_DOCSTRING = """
1359- Computes the natural logarithm for each element `x_i` of input array `x`.
1358+ _LOG_DOCSTRING = r """
1359+ Computes the natural logarithm for each element :math: `x_i` of input array `x`.
13601360
13611361For full documentation refer to :obj:`numpy.log`.
13621362
13631363Parameters
13641364----------
13651365x : {dpnp.ndarray, usm_ndarray}
1366- Input array, expected to have numeric data type.
1366+ Input array, expected to have a floating-point data type.
13671367out : {None, dpnp.ndarray, usm_ndarray}, optional
13681368 Output array to populate.
13691369 Array must have the correct shape and the expected data type.
@@ -1377,9 +1377,8 @@ def cumlogsumexp(
13771377Returns
13781378-------
13791379out : dpnp.ndarray
1380- An array containing the element-wise natural logarithm values.
1381- The data type of the returned array is determined by the Type
1382- Promotion Rules.
1380+ An array containing the element-wise natural logarithm values. The data
1381+ type of the returned array is determined by the Type Promotion Rules.
13831382
13841383Limitations
13851384-----------
@@ -1389,11 +1388,27 @@ def cumlogsumexp(
13891388
13901389See Also
13911390--------
1392- :obj:`dpnp.log10` : Return the base 10 logarithm of the input array,
1393- element-wise.
1394- :obj:`dpnp.log2` : Base-2 logarithm of x.
1395- :obj:`dpnp.log1p` : Return the natural logarithm of one plus
1396- the input array, element-wise.
1391+ :obj:`dpnp.log10` : Calculate :math:`\log_10(x)`, element-wise.
1392+ :obj:`dpnp.log2` : Calculate :math:`\log_2(x)`, element-wise.
1393+ :obj:`dpnp.log1p` : Calculate :math:`\log(1 + x)`, element-wise.
1394+
1395+ Notes
1396+ -----
1397+ :obj:`dpnp.log` is a multivalued function: for each `x` there are infinitely
1398+ many numbers `z` such that :math:`e^z = x`. The convention is to return the `z`
1399+ whose the imaginary part lies in the interval :math:`[-\pi, \pi]`.
1400+
1401+ For real-valued floating-point input data types, :obj:`dpnp.log` always returns
1402+ real output. For each value that cannot be expressed as a real number or
1403+ nfinity, it yields ``NaN``.
1404+
1405+ For complex floating-point input data types, :obj:`dpnp.log` is a complex
1406+ analytic function that has, by convention, the branch cuts
1407+ :math:`(-\infty, 0)` and is continuous from above on it.
1408+
1409+ In the cases where the input has a negative real part and a very small negative
1410+ complex part (approaching 0), the result is so close to :math:`-\pi` that it
1411+ evaluates to exactly :math:`-\pi`.
13971412
13981413Examples
13991414--------
@@ -1414,15 +1429,15 @@ def cumlogsumexp(
14141429)
14151430
14161431
1417- _LOG10_DOCSTRING = """
1418- Computes the base-10 logarithm for each element `x_i` of input array `x`.
1432+ _LOG10_DOCSTRING = r """
1433+ Computes the base-10 logarithm for each element :math: `x_i` of input array `x`.
14191434
14201435For full documentation refer to :obj:`numpy.log10`.
14211436
14221437Parameters
14231438----------
14241439x : {dpnp.ndarray, usm_ndarray}
1425- Input array, expected to have numeric data type.
1440+ Input array, expected to have a floating-point data type.
14261441out : {None, dpnp.ndarray, usm_ndarray}, optional
14271442 Output array to populate.
14281443 Array must have the correct shape and the expected data type.
@@ -1436,9 +1451,8 @@ def cumlogsumexp(
14361451Returns
14371452-------
14381453out : dpnp.ndarray
1439- An array containing the element-wise base-10 logarithm of `x`.
1440- The data type of the returned array is determined by the
1441- Type Promotion Rules.
1454+ An array containing the element-wise base-10 logarithm of `x`. The data
1455+ type of the returned array is determined by the Type Promotion Rules.
14421456
14431457Limitations
14441458-----------
@@ -1448,9 +1462,27 @@ def cumlogsumexp(
14481462
14491463See Also
14501464--------
1451- :obj:`dpnp.log` : Natural logarithm, element-wise.
1452- :obj:`dpnp.log2` : Return the base-2 logarithm of the input array, element-wise.
1453- :obj:`dpnp.log1p` : Return the natural logarithm of one plus the input array, element-wise.
1465+ :obj:`dpnp.log` : Calculate :math:`\log(x)`, element-wise.
1466+ :obj:`dpnp.log2` : Calculate :math:`\log_2(x)`, element-wise.
1467+ :obj:`dpnp.log1p` : Calculate :math:`\log(1 + x)`, element-wise.
1468+
1469+ Notes
1470+ -----
1471+ :obj:`dpnp.log10` is a multivalued function: for each `x` there are infinitely
1472+ many numbers `z` such that :math:`10^z = x`. The convention is to return the `z`
1473+ whose the imaginary part lies in the interval :math:`[-\pi, \pi]`.
1474+
1475+ For real-valued floating-point input data types, :obj:`dpnp.log10` always
1476+ returns real output. For each value that cannot be expressed as a real number
1477+ or nfinity, it yields ``NaN``.
1478+
1479+ For complex floating-point input data types, :obj:`dpnp.log10` is a complex
1480+ analytic function that has, by convention, the branch cuts
1481+ :math:`(-\infty, 0)` and is continuous from above on it.
1482+
1483+ In the cases where the input has a negative real part and a very small negative
1484+ complex part (approaching 0), the result is so close to :math:`-\pi` that it
1485+ evaluates to exactly :math:`-\pi`.
14541486
14551487Examples
14561488--------
@@ -1474,18 +1506,16 @@ def cumlogsumexp(
14741506)
14751507
14761508
1477- _LOG1P_DOCSTRING = """
1478- Computes the natural logarithm of (1 + `x`) for each element `x_i` of input
1479- array `x`.
1480-
1481- This function calculates `log(1 + x)` more accurately for small values of `x`.
1509+ _LOG1P_DOCSTRING = r"""
1510+ Computes the natural logarithm of (1 + `x`) for each element :math:`x_i` of
1511+ input array `x`.
14821512
14831513For full documentation refer to :obj:`numpy.log1p`.
14841514
14851515Parameters
14861516----------
14871517x : {dpnp.ndarray, usm_ndarray}
1488- Input array, expected to have numeric data type.
1518+ Input array, expected to have a floating-point data type.
14891519out : {None, dpnp.ndarray, usm_ndarray}, optional
14901520 Output array to populate.
14911521 Array must have the correct shape and the expected data type.
@@ -1499,8 +1529,8 @@ def cumlogsumexp(
14991529Returns
15001530-------
15011531out : dpnp.ndarray
1502- An array containing the element-wise ` log(1 + x)` results. The data type
1503- of the returned array is determined by the Type Promotion Rules.
1532+ An array containing the element-wise :math:`\ log(1 + x)` results. The data
1533+ type of the returned array is determined by the Type Promotion Rules.
15041534
15051535Limitations
15061536-----------
@@ -1510,10 +1540,29 @@ def cumlogsumexp(
15101540
15111541See Also
15121542--------
1513- :obj:`dpnp.expm1` : ``exp(x) - 1``, the inverse of :obj:`dpnp.log1p`.
1514- :obj:`dpnp.log` : Natural logarithm, element-wise.
1515- :obj:`dpnp.log10` : Return the base 10 logarithm of the input array, element-wise.
1516- :obj:`dpnp.log2` : Return the base-2 logarithm of the input array, element-wise.
1543+ :obj:`dpnp.expm1` : Calculate :math:`e^x - 1`, element-wise,
1544+ the inverse of :obj:`dpnp.log1p`.
1545+ :obj:`dpnp.log` : Calculate :math:`\log(x)`, element-wise.
1546+ :obj:`dpnp.log10` : Calculate :math:`\log_10(x)`, element-wise.
1547+ :obj:`dpnp.log2` : Calculate :math:`\log_2(x)`, element-wise.
1548+
1549+ Notes
1550+ -----
1551+ For real-valued floating-point input data types, :obj:`dpnp.log1p` provides
1552+ greater precision than :math:`\log(1 + x)` for `x` so small that
1553+ :math:`1 + x == 1`.
1554+
1555+ :obj:`dpnp.log1p` is a multivalued function: for each `x` there are infinitely
1556+ many numbers `z` such that :math:`e^z = 1 + x`. The convention is to return the
1557+ `z` whose the imaginary part lies in the interval :math:`[-\pi, \pi]`.
1558+
1559+ For real-valued floating-point input data types, :obj:`dpnp.log1p` always
1560+ returns real output. For each value that cannot be expressed as a real number
1561+ or nfinity, it yields ``NaN``.
1562+
1563+ For complex floating-point input data types, :obj:`dpnp.log1p` is a complex
1564+ analytic function that has, by convention, the branch cuts
1565+ :math:`(-\infty, 0)` and is continuous from above on it.
15171566
15181567Examples
15191568--------
@@ -1540,15 +1589,15 @@ def cumlogsumexp(
15401589)
15411590
15421591
1543- _LOG2_DOCSTRING = """
1544- Computes the base-2 logarithm for each element `x_i` of input array `x`.
1592+ _LOG2_DOCSTRING = r """
1593+ Computes the base-2 logarithm for each element :math: `x_i` of input array `x`.
15451594
15461595For full documentation refer to :obj:`numpy.log2`.
15471596
15481597Parameters
15491598----------
15501599x : {dpnp.ndarray, usm_ndarray}
1551- Input array, expected to have numeric data type.
1600+ Input array, expected to have a floating-point data type.
15521601out : {None, dpnp.ndarray, usm_ndarray}, optional
15531602 Output array to populate.
15541603 Array must have the correct shape and the expected data type.
@@ -1562,9 +1611,8 @@ def cumlogsumexp(
15621611Returns
15631612-------
15641613out : dpnp.ndarray
1565- An array containing the element-wise base-2 logarithm of `x`.
1566- The data type of the returned array is determined by the
1567- Type Promotion Rules.
1614+ An array containing the element-wise base-2 logarithm of `x`. The data type
1615+ of the returned array is determined by the Type Promotion Rules.
15681616
15691617Limitations
15701618-----------
@@ -1574,9 +1622,27 @@ def cumlogsumexp(
15741622
15751623See Also
15761624--------
1577- :obj:`dpnp.log` : Natural logarithm, element-wise.
1578- :obj:`dpnp.log10` : Return the base 10 logarithm of the input array, element-wise.
1579- :obj:`dpnp.log1p` : Return the natural logarithm of one plus the input array, element-wise.
1625+ :obj:`dpnp.log` : Calculate :math:`\log(x)`, element-wise.
1626+ :obj:`dpnp.log10` : Calculate :math:`\log_10(x)`, element-wise.
1627+ ::obj:`dpnp.log1p` : Calculate :math:`\log(1 + x)`, element-wise.
1628+
1629+ Notes
1630+ -----
1631+ :obj:`dpnp.log2` is a multivalued function: for each `x` there are infinitely
1632+ many numbers `z` such that :math:`2^z = x`. The convention is to return the `z`
1633+ whose the imaginary part lies in the interval :math:`[-\pi, \pi]`.
1634+
1635+ For real-valued floating-point input data types, :obj:`dpnp.log2` always
1636+ returns real output. For each value that cannot be expressed as a real number
1637+ or nfinity, it yields ``NaN``.
1638+
1639+ For complex floating-point input data types, :obj:`dpnp.log2` is a complex
1640+ analytic function that has, by convention, the branch cuts
1641+ :math:`(-\infty, 0)` and is continuous from above on it.
1642+
1643+ In the cases where the input has a negative real part and a very small negative
1644+ complex part (approaching 0), the result is so close to :math:`-\pi` that it
1645+ evaluates to exactly :math:`-\pi`.
15801646
15811647Examples
15821648--------
0 commit comments