@@ -81,15 +81,15 @@ def _call_window_kernel(
8181 return result
8282
8383
84- def blackman (M , device = None , usm_type = None , sycl_queue = None ):
84+ def bartlett (M , device = None , usm_type = None , sycl_queue = None ):
8585 r"""
86- Return the Blackman window.
86+ Return the Bartlett window.
8787
88- The Blackman window is a taper formed by using the first three terms of a
89- summation of cosines . It was designed to have close to the minimal leakage
90- possible. It is close to optimal, only slightly worse than a Kaiser window .
88+ The Bartlett window is very similar to a triangular window, except that the
89+ end points are at zero . It is often used in signal processing for tapering
90+ a signal, without generating too much ripple in the frequency domain .
9191
92- For full documentation refer to :obj:`numpy.blackman `.
92+ For full documentation refer to :obj:`numpy.bartlett `.
9393
9494 Parameters
9595 ----------
@@ -120,69 +120,70 @@ def blackman(M, device=None, usm_type=None, sycl_queue=None):
120120 Returns
121121 -------
122122 out : dpnp.ndarray of shape (M,)
123- The window, with the maximum value normalized to one (the value one
124- appears only if the number of samples is odd).
123+ The triangular window, with the maximum value normalized to one
124+ (the value one appears only if the number of samples is odd), with the
125+ first and last samples equal to zero.
125126
126127 See Also
127128 --------
128- :obj:`dpnp.bartlett ` : Return the Bartlett window.
129+ :obj:`dpnp.blackman ` : Return the Blackman window.
129130 :obj:`dpnp.hamming` : Return the Hamming window.
130131 :obj:`dpnp.hanning` : Return the Hanning window.
131132 :obj:`dpnp.kaiser` : Return the Kaiser window.
132133
133134 Notes
134135 -----
135- The Blackman window is defined as
136+ The Bartlett window is defined as
136137
137- .. math:: w(n) = 0.42 - 0.5\cos\ left(\frac{2\pi{n}}{ M-1}\right)
138- + 0.08\cos\ left( \frac{4\pi{n}}{ M-1}\right)
138+ .. math:: w(n) = \frac{2}{M-1} \ left(\frac{M-1}{2} -
139+ \ left|n - \frac{M-1}{2}\right| \right)
139140 \qquad 0 \leq n \leq M-1
140141
141142 Examples
142143 --------
143144 >>> import dpnp as np
144- >>> np.blackman (12)
145- array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01 ,
146- 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01 ,
147- 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17 ])
145+ >>> np.bartlett (12)
146+ array([0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273 ,
147+ 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636 ,
148+ 0.18181818, 0. ])
148149
149150 Creating the output array on a different device or with a
150151 specified usm_type:
151152
152- >>> x = np.blackman(3 ) # default case
153+ >>> x = np.bartlett(4 ) # default case
153154 >>> x, x.device, x.usm_type
154- (array([-1.38777878e-17, 1.00000000e+00, -1.38777878e-17 ]),
155+ (array([0. , 0.66666667, 0.66666667, 0. ]),
155156 Device(level_zero:gpu:0),
156157 'device')
157158
158- >>> y = np.blackman(3 , device="cpu")
159+ >>> y = np.bartlett(4 , device="cpu")
159160 >>> y, y.device, y.usm_type
160- (array([-1.38777878e-17, 1.00000000e+00, -1.38777878e-17 ]),
161+ (array([0. , 0.66666667, 0.66666667, 0. ]),
161162 Device(opencl:cpu:0),
162163 'device')
163164
164- >>> z = np.blackman(3 , usm_type="host")
165+ >>> z = np.bartlett(4 , usm_type="host")
165166 >>> z, z.device, z.usm_type
166- (array([-1.38777878e-17, 1.00000000e+00, -1.38777878e-17 ]),
167+ (array([0. , 0.66666667, 0.66666667, 0. ]),
167168 Device(level_zero:gpu:0),
168169 'host')
169170
170171 """
171172
172173 return _call_window_kernel (
173- M , wi ._blackman , device = device , usm_type = usm_type , sycl_queue = sycl_queue
174+ M , wi ._bartlett , device = device , usm_type = usm_type , sycl_queue = sycl_queue
174175 )
175176
176177
177- def bartlett (M , device = None , usm_type = None , sycl_queue = None ):
178+ def blackman (M , device = None , usm_type = None , sycl_queue = None ):
178179 r"""
179- Return the Bartlett window.
180+ Return the Blackman window.
180181
181- The Bartlett window is very similar to a triangular window, except that the
182- end points are at zero . It is often used in signal processing for tapering
183- a signal, without generating too much ripple in the frequency domain .
182+ The Blackman window is a taper formed by using the first three terms of a
183+ summation of cosines . It was designed to have close to the minimal leakage
184+ possible. It is close to optimal, only slightly worse than a Kaiser window .
184185
185- For full documentation refer to :obj:`numpy.bartlett `.
186+ For full documentation refer to :obj:`numpy.blackman `.
186187
187188 Parameters
188189 ----------
@@ -213,57 +214,57 @@ def bartlett(M, device=None, usm_type=None, sycl_queue=None):
213214 Returns
214215 -------
215216 out : dpnp.ndarray of shape (M,)
216- The triangular window, with the maximum value normalized to one
217- (the value one appears only if the number of samples is odd), with the
218- first and last samples equal to zero.
217+ The window, with the maximum value normalized to one (the value one
218+ appears only if the number of samples is odd).
219219
220220 See Also
221221 --------
222- :obj:`dpnp.blackman ` : Return the Blackman window.
222+ :obj:`dpnp.bartlett ` : Return the Bartlett window.
223223 :obj:`dpnp.hamming` : Return the Hamming window.
224224 :obj:`dpnp.hanning` : Return the Hanning window.
225225 :obj:`dpnp.kaiser` : Return the Kaiser window.
226226
227227 Notes
228228 -----
229- The Bartlett window is defined as
229+ The Blackman window is defined as
230230
231- .. math:: w(n) = \frac{2}{M-1} \left(\frac{M-1}{2} -
232- \left|n - \frac{M-1}{2}\right|\right)
231+ .. math:: w(n) = 0.42 - 0.5\cos\left(\frac{2\pi{n}}{M-1}\right)
232+ + 0.08\cos\left(\frac{4\pi{n}}{M-1}\right)
233+ \qquad 0 \leq n \leq M-1
233234
234235 Examples
235236 --------
236237 >>> import dpnp as np
237- >>> np.bartlett (12)
238- array([0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273 ,
239- 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636 ,
240- 0.18181818, 0. ])
238+ >>> np.blackman (12)
239+ array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01 ,
240+ 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01 ,
241+ 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17 ])
241242
242243 Creating the output array on a different device or with a
243244 specified usm_type:
244245
245- >>> x = np.bartlett(4 ) # default case
246+ >>> x = np.blackman(3 ) # default case
246247 >>> x, x.device, x.usm_type
247- (array([0. , 0.66666667, 0.66666667, 0. ]),
248+ (array([-1.38777878e-17, 1.00000000e+00, -1.38777878e-17 ]),
248249 Device(level_zero:gpu:0),
249250 'device')
250251
251- >>> y = np.bartlett(4 , device="cpu")
252+ >>> y = np.blackman(3 , device="cpu")
252253 >>> y, y.device, y.usm_type
253- (array([0. , 0.66666667, 0.66666667, 0. ]),
254+ (array([-1.38777878e-17, 1.00000000e+00, -1.38777878e-17 ]),
254255 Device(opencl:cpu:0),
255256 'device')
256257
257- >>> z = np.bartlett(4 , usm_type="host")
258+ >>> z = np.blackman(3 , usm_type="host")
258259 >>> z, z.device, z.usm_type
259- (array([0. , 0.66666667, 0.66666667, 0. ]),
260+ (array([-1.38777878e-17, 1.00000000e+00, -1.38777878e-17 ]),
260261 Device(level_zero:gpu:0),
261262 'host')
262263
263264 """
264265
265266 return _call_window_kernel (
266- M , wi ._bartlett , device = device , usm_type = usm_type , sycl_queue = sycl_queue
267+ M , wi ._blackman , device = device , usm_type = usm_type , sycl_queue = sycl_queue
267268 )
268269
269270
0 commit comments