@@ -954,7 +954,7 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False):
954954 weights belonging to the samples falling into each bin.
955955
956956 Default: ``None``
957- density : { bool} , optional
957+ density : bool, optional
958958 If ``False``, the default, returns the number of samples in each bin.
959959 If ``True``, returns the probability *density* function at the bin,
960960 ``bin_count / sample_count / bin_volume``.
@@ -963,10 +963,10 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False):
963963
964964 Returns
965965 -------
966- H : { dpnp.ndarray}
966+ H : dpnp.ndarray
967967 The multidimensional histogram of sample x. See density and weights
968968 for the different possible semantics.
969- edges : { list of dpnp.ndarray}
969+ edges : list of { dpnp.ndarray or usm_ndarray }
970970 A list of D arrays describing the bin edges for each dimension.
971971
972972 See Also
@@ -1039,4 +1039,8 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False):
10391039 n = n / dpnp .reshape (diff , shape = shape )
10401040 n /= s
10411041
1042+ for i , b in enumerate (bins ):
1043+ if dpnp .is_supported_array_type (b ):
1044+ bin_edges_view_list [i ] = b
1045+
10421046 return n , bin_edges_view_list
0 commit comments