@@ -83,22 +83,22 @@ cpdef utils.dpnp_descriptor dpnp_cholesky(utils.dpnp_descriptor input_):
83
83
84
84
cpdef object dpnp_cond(object input , object p):
85
85
if p in (' f' , ' fro' ):
86
- input = input .ravel(order = ' K' )
86
+ input = dpnp .ravel(input , order = ' K' )
87
87
sqnorm = dpnp.dot(input , input )
88
88
res = dpnp.sqrt(sqnorm)
89
89
ret = dpnp.array([res])
90
90
elif p == numpy.inf:
91
91
dpnp_sum_val = dpnp.array([dpnp.sum(dpnp.abs(input ), axis = 1 )])
92
- ret = dpnp.array([dpnp_sum_val. max()] )
92
+ ret = dpnp.max(dpnp_sum_val )
93
93
elif p == - numpy.inf:
94
94
dpnp_sum_val = dpnp.array([dpnp.sum(dpnp.abs(input ), axis = 1 )])
95
- ret = dpnp.array([dpnp_sum_val. min()] )
95
+ ret = dpnp.min(dpnp_sum_val )
96
96
elif p == 1 :
97
97
dpnp_sum_val = dpnp.array([dpnp.sum(dpnp.abs(input ), axis = 0 )])
98
- ret = dpnp.array([dpnp_sum_val. max()] )
98
+ ret = dpnp.max(dpnp_sum_val )
99
99
elif p == - 1 :
100
100
dpnp_sum_val = dpnp.array([dpnp.sum(dpnp.abs(input ), axis = 0 )])
101
- ret = dpnp.array([dpnp_sum_val. min()] )
101
+ ret = dpnp.min(dpnp_sum_val )
102
102
else :
103
103
ret = dpnp.array([input .item(0 )])
104
104
return ret
@@ -225,7 +225,7 @@ cpdef object dpnp_norm(object input, ord=None, axis=None):
225
225
(ord in (' f' , ' fro' ) and ndim == 2 ) or
226
226
(ord == 2 and ndim == 1 )):
227
227
228
- input = input .ravel(order = ' K' )
228
+ input = dpnp .ravel(input , order = ' K' )
229
229
sqnorm = dpnp.dot(input , input )
230
230
ret = dpnp.sqrt([sqnorm])
231
231
return dpnp.array([ret], dtype = res_type)
0 commit comments