@@ -34,11 +34,13 @@ class TestCanCast(unittest.TestCase):
3434 @testing .for_all_dtypes_combination (names = ("from_dtype" , "to_dtype" ))
3535 @testing .numpy_cupy_equal ()
3636 def test_can_cast (self , xp , from_dtype , to_dtype ):
37- if self .obj_type == "scalar" :
37+ if (
38+ self .obj_type == "scalar"
39+ and numpy .lib .NumpyVersion (numpy .__version__ ) < "2.0.0"
40+ ):
3841 pytest .skip ("to be aligned with NEP-50" )
3942
4043 from_obj = _generate_type_routines_input (xp , from_dtype , self .obj_type )
41-
4244 ret = xp .can_cast (from_obj , to_dtype )
4345 assert isinstance (ret , bool )
4446 return ret
@@ -83,7 +85,9 @@ def test_common_type_bool(self, dtype):
8385@testing .parameterize (
8486 * testing .product (
8587 {
86- "obj_type1" : ["dtype" , "specifier" , "scalar" , "array" , "primitive" ],
88+ # obj_type1 is modified since at least one input should be an
89+ # array for dpnp.result_dtype
90+ "obj_type1" : ["array" ],
8791 "obj_type2" : ["dtype" , "specifier" , "scalar" , "array" , "primitive" ],
8892 }
8993 )
@@ -92,37 +96,35 @@ class TestResultType(unittest.TestCase):
9296 @testing .for_all_dtypes_combination (names = ("dtype1" , "dtype2" ))
9397 @testing .numpy_cupy_equal ()
9498 def test_result_type (self , xp , dtype1 , dtype2 ):
95- if "scalar" in {self .obj_type1 , self .obj_type2 }:
99+ if (
100+ self .obj_type2 == "scalar"
101+ and numpy .lib .NumpyVersion (numpy .__version__ ) < "2.0.0"
102+ ):
96103 pytest .skip ("to be aligned with NEP-50" )
97104
98105 input1 = _generate_type_routines_input (xp , dtype1 , self .obj_type1 )
99-
100106 input2 = _generate_type_routines_input (xp , dtype2 , self .obj_type2 )
101107
102- flag1 = isinstance (input1 , (numpy .ndarray , cupy .ndarray ))
103- flag2 = isinstance (input2 , (numpy .ndarray , cupy .ndarray ))
104- dt1 = cupy .dtype (input1 ) if not flag1 else None
105- dt2 = cupy .dtype (input2 ) if not flag2 else None
106- # dpnp takes into account device capabilities only if one of the
107- # inputs is an array, for such a case, if the other dtype is not
108- # supported by device, dpnp raise ValueError. So, we skip the test.
109- if flag1 or flag2 :
110- if (
111- dt1 in [cupy .float64 , cupy .complex128 ]
112- or dt2 in [cupy .float64 , cupy .complex128 ]
113- ) and not has_support_aspect64 ():
114- pytest .skip ("No fp64 support by device." )
108+ # dpnp.result_type only takes into account device capabilities. If
109+ # dtype2 is `float32` and the object is primitive, the `input2` variable
110+ # is `float` which needs a device with double precision support.
111+ # so we skip the test for such a case on a device that does not support fp64
112+ flag = self .obj_type2 == "primitive" and input2 == float
113+ if flag and not has_support_aspect64 ():
114+ pytest .skip ("No fp64 support by device." )
115115
116116 ret = xp .result_type (input1 , input2 )
117117
118- # dpnp takes into account device capabilities if one of the inputs
119- # is an array, for such a case, we have to modify the results for
120- # NumPy to align it with device capabilities.
121- if (flag1 or flag2 ) and xp == numpy and not has_support_aspect64 ():
122- ret = numpy .dtype (numpy .float32 ) if ret == numpy .float64 else ret
123- ret = (
124- numpy .dtype (numpy .complex64 ) if ret == numpy .complex128 else ret
125- )
118+ # dpnp.result_type takes into account device capabilities.
119+ # So, we have to modify the results for NumPy to align it with
120+ # device capabilities.
121+ flag1 = isinstance (input1 , numpy .ndarray )
122+ flag2 = isinstance (input2 , numpy .ndarray )
123+ if (flag1 or flag2 ) and not has_support_aspect64 ():
124+ if ret == numpy .float64 :
125+ ret = numpy .dtype (numpy .float32 )
126+ elif ret == numpy .complex128 :
127+ ret = numpy .dtype (numpy .complex64 )
126128
127129 assert isinstance (ret , numpy .dtype )
128130 return ret
0 commit comments