@@ -763,12 +763,13 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
763763 Parameters
764764 ----------
765765 x : {dpnp.ndarray, usm_ndarray} of shape (N,)
766- An array containing the x coordinates of the points to be
766+ An array containing the `x` coordinates of the points to be
767767 histogrammed.
768768 y : {dpnp.ndarray, usm_ndarray} of shape (N,)
769- An array containing the y coordinates of the points to be
769+ An array containing the `y` coordinates of the points to be
770770 histogrammed.
771- bins : {int, list of dpnp.ndarray or usm_ndarray, sequence of scalars}, optional
771+ bins : {int, list of dpnp.ndarray or usm_ndarray, sequence of scalars}, \
772+ optional
772773 Histogram bins.
773774
774775 The bins specification:
@@ -788,19 +789,19 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
788789 (if not specified explicitly in the `bins` parameters):
789790 ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
790791 will be considered outliers and not tallied in the histogram.
791- density : bool, optional
792+ density : {None, bool} , optional
792793 If ``False``, the default, returns the number of samples in each bin.
793794 If ``True``, returns the probability *density* function at the bin,
794795 ``bin_count / sample_count / bin_area``.
795- weights : {dpnp.ndarray, usm_ndarray} of shape(N,), optional
796+ weights : {dpnp.ndarray, usm_ndarray} of shape (N,), optional
796797 An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.
797- Weights are normalized to 1 if `density` is True. If `density` is
798- False, the values of the returned histogram are equal to the sum of
798+ Weights are normalized to ``1`` if `density` is `` True`` . If `density` is
799+ `` False`` , the values of the returned histogram are equal to the sum of
799800 the weights belonging to the samples falling into each bin.
800801
801802 Returns
802803 -------
803- H : ndarray, shape(nx, ny)
804+ H : dpnp. ndarray of shape (nx, ny)
804805 The bi-dimensional histogram of samples `x` and `y`. Values in `x`
805806 are histogrammed along the first dimension and values in `y` are
806807 histogrammed along the second dimension.
@@ -816,15 +817,15 @@ def histogram2d(x, y, bins=10, range=None, density=None, weights=None):
816817
817818 Notes
818819 -----
819- When `density` is True, then the returned histogram is the sample
820+ When `density` is `` True`` , then the returned histogram is the sample
820821 density, defined such that the sum over bins of the product
821822 ``bin_value * bin_area`` is 1.
822823
823824 Please note that the histogram does not follow the Cartesian convention
824825 where `x` values are on the abscissa and `y` values on the ordinate
825- axis. Rather, `x` is histogrammed along the first dimension of the
826+ axis. Rather, `x` is histogrammed along the first dimension of the
826827 array (vertical), and `y` along the second dimension of the array
827- (horizontal). This ensures compatibility with `histogramdd`.
828+ (horizontal). This ensures compatibility with `histogramdd`.
828829
829830 Examples
830831 --------
0 commit comments