|
25 | 25 |
|
26 | 26 | #pragma once |
27 | 27 |
|
| 28 | +#define SYCL_EXT_ONEAPI_COMPLEX |
| 29 | +#if __has_include(<sycl/ext/oneapi/experimental/sycl_complex.hpp>) |
| 30 | +#include <sycl/ext/oneapi/experimental/sycl_complex.hpp> |
| 31 | +#else |
| 32 | +#include <sycl/ext/oneapi/experimental/complex/complex.hpp> |
| 33 | +#endif |
| 34 | + |
28 | 35 | #include <sycl/sycl.hpp> |
29 | 36 |
|
| 37 | +// dpctl tensor headers |
| 38 | +#include "utils/type_utils.hpp" |
| 39 | + |
30 | 40 | namespace dpnp::kernels::sinc |
31 | 41 | { |
32 | | -template <typename argT, typename resT> |
| 42 | +namespace tu_ns = dpctl::tensor::type_utils; |
| 43 | + |
| 44 | +namespace impl |
| 45 | +{ |
| 46 | +namespace exprm_ns = sycl::ext::oneapi::experimental; |
| 47 | + |
| 48 | +template <typename Tp> |
| 49 | +inline Tp sin(const Tp &in) |
| 50 | +{ |
| 51 | + if constexpr (tu_ns::is_complex<Tp>::value) { |
| 52 | + using realTp = typename Tp::value_type; |
| 53 | + |
| 54 | + constexpr realTp q_nan = std::numeric_limits<realTp>::quiet_NaN(); |
| 55 | + |
| 56 | + realTp const &in_re = std::real(in); |
| 57 | + realTp const &in_im = std::imag(in); |
| 58 | + |
| 59 | + const bool in_re_finite = sycl::isfinite(in_re); |
| 60 | + const bool in_im_finite = sycl::isfinite(in_im); |
| 61 | + /* |
| 62 | + * Handle the nearly-non-exceptional cases where |
| 63 | + * real and imaginary parts of input are finite. |
| 64 | + */ |
| 65 | + if (in_re_finite && in_im_finite) { |
| 66 | + Tp res = exprm_ns::sin(exprm_ns::complex<realTp>(in)); // sin(in); |
| 67 | + if (in_re == realTp(0)) { |
| 68 | + res.real(sycl::copysign(realTp(0), in_re)); |
| 69 | + } |
| 70 | + return res; |
| 71 | + } |
| 72 | + |
| 73 | + /* |
| 74 | + * since sin(in) = -I * sinh(I * in), for special cases, |
| 75 | + * we calculate real and imaginary parts of z = sinh(I * in) and |
| 76 | + * then return { imag(z) , -real(z) } which is sin(in). |
| 77 | + */ |
| 78 | + const realTp x = -in_im; |
| 79 | + const realTp y = in_re; |
| 80 | + const bool xfinite = in_im_finite; |
| 81 | + const bool yfinite = in_re_finite; |
| 82 | + /* |
| 83 | + * sinh(+-0 +- I Inf) = sign(d(+-0, dNaN))0 + I dNaN. |
| 84 | + * The sign of 0 in the result is unspecified. Choice = normally |
| 85 | + * the same as dNaN. |
| 86 | + * |
| 87 | + * sinh(+-0 +- I NaN) = sign(d(+-0, NaN))0 + I d(NaN). |
| 88 | + * The sign of 0 in the result is unspecified. Choice = normally |
| 89 | + * the same as d(NaN). |
| 90 | + */ |
| 91 | + if (x == realTp(0) && !yfinite) { |
| 92 | + const realTp sinh_im = q_nan; |
| 93 | + const realTp sinh_re = sycl::copysign(realTp(0), x * sinh_im); |
| 94 | + return Tp{sinh_im, -sinh_re}; |
| 95 | + } |
| 96 | + |
| 97 | + /* |
| 98 | + * sinh(+-Inf +- I 0) = +-Inf + I +-0. |
| 99 | + * |
| 100 | + * sinh(NaN +- I 0) = d(NaN) + I +-0. |
| 101 | + */ |
| 102 | + if (y == realTp(0) && !xfinite) { |
| 103 | + if (std::isnan(x)) { |
| 104 | + const realTp sinh_re = x; |
| 105 | + const realTp sinh_im = y; |
| 106 | + return Tp{sinh_im, -sinh_re}; |
| 107 | + } |
| 108 | + const realTp sinh_re = x; |
| 109 | + const realTp sinh_im = sycl::copysign(realTp(0), y); |
| 110 | + return Tp{sinh_im, -sinh_re}; |
| 111 | + } |
| 112 | + |
| 113 | + /* |
| 114 | + * sinh(x +- I Inf) = dNaN + I dNaN. |
| 115 | + * |
| 116 | + * sinh(x + I NaN) = d(NaN) + I d(NaN). |
| 117 | + */ |
| 118 | + if (xfinite && !yfinite) { |
| 119 | + const realTp sinh_re = q_nan; |
| 120 | + const realTp sinh_im = x * sinh_re; |
| 121 | + return Tp{sinh_im, -sinh_re}; |
| 122 | + } |
| 123 | + |
| 124 | + /* |
| 125 | + * sinh(+-Inf + I NaN) = +-Inf + I d(NaN). |
| 126 | + * The sign of Inf in the result is unspecified. Choice = normally |
| 127 | + * the same as d(NaN). |
| 128 | + * |
| 129 | + * sinh(+-Inf +- I Inf) = +Inf + I dNaN. |
| 130 | + * The sign of Inf in the result is unspecified. |
| 131 | + * Choice = always - here for sinh to have positive result for |
| 132 | + * imaginary part of sin. |
| 133 | + * |
| 134 | + * sinh(+-Inf + I y) = +-Inf cos(y) + I Inf sin(y) |
| 135 | + */ |
| 136 | + if (std::isinf(x)) { |
| 137 | + if (!yfinite) { |
| 138 | + const realTp sinh_re = -x * x; |
| 139 | + const realTp sinh_im = x * (y - y); |
| 140 | + return Tp{sinh_im, -sinh_re}; |
| 141 | + } |
| 142 | + const realTp sinh_re = x * sycl::cos(y); |
| 143 | + const realTp sinh_im = |
| 144 | + std::numeric_limits<realTp>::infinity() * sycl::sin(y); |
| 145 | + return Tp{sinh_im, -sinh_re}; |
| 146 | + } |
| 147 | + |
| 148 | + /* |
| 149 | + * sinh(NaN + I NaN) = d(NaN) + I d(NaN). |
| 150 | + * |
| 151 | + * sinh(NaN +- I Inf) = d(NaN) + I d(NaN). |
| 152 | + * |
| 153 | + * sinh(NaN + I y) = d(NaN) + I d(NaN). |
| 154 | + */ |
| 155 | + const realTp y_m_y = (y - y); |
| 156 | + const realTp sinh_re = (x * x) * y_m_y; |
| 157 | + const realTp sinh_im = (x + x) * y_m_y; |
| 158 | + return Tp{sinh_im, -sinh_re}; |
| 159 | + } |
| 160 | + else { |
| 161 | + if (in == Tp(0)) { |
| 162 | + return in; |
| 163 | + } |
| 164 | + return sycl::sin(in); |
| 165 | + } |
| 166 | +} |
| 167 | +} // namespace impl |
| 168 | + |
| 169 | +template <typename argT, typename Tp> |
33 | 170 | struct SincFunctor |
34 | 171 | { |
35 | 172 | // is function constant for given argT |
36 | 173 | using is_constant = typename std::false_type; |
37 | 174 | // constant value, if constant |
38 | | - // constexpr resT constant_value = resT{}; |
| 175 | + // constexpr Tp constant_value = Tp{}; |
39 | 176 | // is function defined for sycl::vec |
40 | 177 | using supports_vec = typename std::false_type; |
41 | | - // do both argT and resT support subgroup store/load operation |
42 | | - using supports_sg_loadstore = typename std::true_type; |
| 178 | + // do both argT and Tp support subgroup store/load operation |
| 179 | + using supports_sg_loadstore = typename std::negation< |
| 180 | + std::disjunction<tu_ns::is_complex<Tp>, tu_ns::is_complex<argT>>>; |
43 | 181 |
|
44 | | - resT operator()(const argT &x) const |
| 182 | + Tp operator()(const argT &x) const |
45 | 183 | { |
46 | 184 | constexpr argT pi = |
47 | 185 | static_cast<argT>(3.1415926535897932384626433832795029L); |
48 | 186 | const argT y = pi * x; |
49 | 187 |
|
50 | 188 | if (y == argT(0)) { |
51 | | - return argT(1); |
| 189 | + return Tp(1); |
| 190 | + } |
| 191 | + |
| 192 | + if constexpr (tu_ns::is_complex<argT>::value) { |
| 193 | + return impl::sin(y) / y; |
| 194 | + } |
| 195 | + else { |
| 196 | + return sycl::sinpi(x) / y; |
52 | 197 | } |
53 | | - return sycl::sinpi(x) / y; |
54 | 198 | } |
55 | 199 | }; |
56 | 200 | } // namespace dpnp::kernels::sinc |
0 commit comments