@@ -57,10 +57,11 @@ ctypedef void(*fptr_custom_std_var_1in_1out_t)(void *, void * , size_t * , size_
57
57
ctypedef void (* custom_statistic_1in_1out_func_ptr_t)(void * , void * , size_t * , size_t, size_t * , size_t)
58
58
59
59
60
- cdef dparray call_fptr_custom_std_var_1in_1out(DPNPFuncName fptr_name, dparray a, ddof):
60
+ cdef dparray call_fptr_custom_std_var_1in_1out(DPNPFuncName fptr_name, utils.dpnp_descriptor x1, ddof):
61
+ cdef dparray_shape_type x1_shape = x1.shape
61
62
62
63
""" Convert string type names (dparray.dtype) to C enum DPNPFuncType """
63
- cdef DPNPFuncType param_type = dpnp_dtype_to_DPNPFuncType(a .dtype)
64
+ cdef DPNPFuncType param_type = dpnp_dtype_to_DPNPFuncType(x1 .dtype)
64
65
65
66
""" get the FPTR data structure """
66
67
cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(fptr_name, param_type, DPNP_FT_NONE)
@@ -76,8 +77,8 @@ cdef dparray call_fptr_custom_std_var_1in_1out(DPNPFuncName fptr_name, dparray a
76
77
cdef Py_ssize_t axis_size = 0
77
78
78
79
""" Call FPTR function """
79
- func(a .get_data(), result.get_data(), < size_t * > a._dparray_shape .data(),
80
- a .ndim, < size_t * > axis.data(), axis_size, ddof)
80
+ func(x1 .get_data(), result.get_data(), < size_t * > x1_shape .data(),
81
+ x1 .ndim, < size_t * > axis.data(), axis_size, ddof)
81
82
82
83
return result
83
84
@@ -91,14 +92,12 @@ cpdef dpnp_average(utils.dpnp_descriptor x1):
91
92
return (return_type(array_sum / x1.size))
92
93
93
94
94
- cpdef dparray dpnp_correlate(dparray x1, dparray x2):
95
+ cpdef dparray dpnp_correlate(utils.dpnp_descriptor x1, utils.dpnp_descriptor x2):
95
96
cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(x1.dtype)
96
97
cdef DPNPFuncType param2_type = dpnp_dtype_to_DPNPFuncType(x2.dtype)
97
98
98
- cdef dparray_shape_type x1_shape, x2_shape
99
-
100
- x1_shape = x1.shape
101
- x2_shape = x2.shape
99
+ cdef dparray_shape_type x1_shape = x1.shape
100
+ cdef dparray_shape_type x2_shape = x2.shape
102
101
103
102
cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_CORRELATE, param1_type, param2_type)
104
103
@@ -220,24 +219,24 @@ cpdef dparray dpnp_mean(dparray input, axis):
220
219
cdef long size_input = input .size
221
220
cdef dparray_shape_type shape_input = input .shape
222
221
223
- if input .dtype == numpy .float32:
224
- res_type = numpy .float32
222
+ if input .dtype == dpnp .float32:
223
+ res_type = dpnp .float32
225
224
else :
226
- res_type = numpy .float64
225
+ res_type = dpnp .float64
227
226
228
227
if size_input == 0 :
229
- return dpnp.array([numpy .nan], dtype = res_type)
228
+ return dpnp.array([dpnp .nan], dtype = res_type)
230
229
231
230
if isinstance (axis, int ):
232
231
axis_ = tuple ([axis])
233
232
else :
234
233
axis_ = axis
235
234
236
235
if axis_ is None :
237
- output_shape = dparray(1 , dtype = numpy .int64)
236
+ output_shape = dparray(1 , dtype = dpnp .int64)
238
237
output_shape[0 ] = 1
239
238
else :
240
- output_shape = dparray(len (shape_input) - len (axis_), dtype = numpy .int64)
239
+ output_shape = dparray(len (shape_input) - len (axis_), dtype = dpnp .int64)
241
240
ind = 0
242
241
for id , shape_axis in enumerate (shape_input):
243
242
if id not in axis_:
@@ -316,7 +315,8 @@ cpdef dparray dpnp_mean(dparray input, axis):
316
315
return dpnp_result_array / del_
317
316
318
317
319
- cpdef dparray dpnp_median(dparray array1):
318
+ cpdef dparray dpnp_median(utils.dpnp_descriptor array1):
319
+ cdef dparray_shape_type x1_shape = array1.shape
320
320
cdef DPNPFuncType param1_type = dpnp_dtype_to_DPNPFuncType(array1.dtype)
321
321
322
322
cdef DPNPFuncData kernel_data = get_dpnp_function_ptr(DPNP_FN_MEDIAN, param1_type, param1_type)
@@ -330,7 +330,7 @@ cpdef dparray dpnp_median(dparray array1):
330
330
cdef dparray_shape_type axis
331
331
cdef Py_ssize_t axis_size = 0
332
332
333
- func(array1.get_data(), result.get_data(), < size_t * > array1._dparray_shape .data(), array1.ndim, < size_t * > axis.data(), axis_size)
333
+ func(array1.get_data(), result.get_data(), < size_t * > x1_shape .data(), array1.ndim, < size_t * > axis.data(), axis_size)
334
334
335
335
return result
336
336
@@ -393,7 +393,7 @@ cpdef dparray dpnp_min(dparray input, axis):
393
393
return _dpnp_min(input , axis_, output_shape)
394
394
395
395
396
- cpdef dparray dpnp_nanvar(dparray arr, ddof):
396
+ cpdef dparray dpnp_nanvar(utils.dpnp_descriptor arr, ddof):
397
397
cdef dparray mask_arr = dpnp.isnan(arr)
398
398
n = sum (mask_arr)
399
399
res_size = arr.size - n
@@ -409,12 +409,13 @@ cpdef dparray dpnp_nanvar(dparray arr, ddof):
409
409
410
410
func(arr.get_data(), mask_arr.get_data(), without_nan_arr.get_data(), arr.size)
411
411
412
- return call_fptr_custom_std_var_1in_1out(DPNP_FN_VAR, without_nan_arr, ddof)
412
+ without_nan_arr_desc = dpnp.get_dpnp_descriptor(without_nan_arr)
413
+ return call_fptr_custom_std_var_1in_1out(DPNP_FN_VAR, without_nan_arr_desc, ddof)
413
414
414
415
415
- cpdef dparray dpnp_std(dparray a, size_t ddof):
416
+ cpdef dparray dpnp_std(utils.dpnp_descriptor a, size_t ddof):
416
417
return call_fptr_custom_std_var_1in_1out(DPNP_FN_STD, a, ddof)
417
418
418
419
419
- cpdef dparray dpnp_var(dparray a, size_t ddof):
420
+ cpdef dparray dpnp_var(utils.dpnp_descriptor a, size_t ddof):
420
421
return call_fptr_custom_std_var_1in_1out(DPNP_FN_VAR, a, ddof)
0 commit comments