@@ -468,17 +468,18 @@ def eig(a):
468468
469469 Returns
470470 -------
471+ A namedtuple with the following attributes:
472+
471473 eigenvalues : (..., M) dpnp.ndarray
472474 The eigenvalues, each repeated according to its multiplicity.
473- The eigenvalues are not necessarily ordered. The resulting
474- array will be of complex type, unless the imaginary part is
475- zero in which case it will be cast to a real type. When `a`
476- is real the resulting eigenvalues will be real (0 imaginary
477- part) or occur in conjugate pairs
475+ The eigenvalues are not necessarily ordered. The resulting array will
476+ be of complex type, unless the imaginary part is zero in which case it
477+ will be cast to a real type. When `a` is real the resulting eigenvalues
478+ will be real (zero imaginary part) or occur in conjugate pairs.
478479 eigenvectors : (..., M, M) dpnp.ndarray
479- The normalized (unit "length") eigenvectors, such that the
480- column ``v [:,i]`` is the eigenvector corresponding to the
481- eigenvalue ``w [i]``.
480+ The normalized (unit "length") eigenvectors, such that the column
481+ ``eigenvectors [:,i]`` is the eigenvector corresponding to the
482+ eigenvalue ``eigenvalues [i]``.
482483
483484 Note
484485 ----
@@ -582,12 +583,14 @@ def eigh(a, UPLO="L"):
582583
583584 Returns
584585 -------
585- w : (..., M) dpnp.ndarray
586- The eigenvalues in ascending order, each repeated according to
587- its multiplicity.
588- v : (..., M, M) dpnp.ndarray
589- The column ``v[:, i]`` is the normalized eigenvector corresponding
590- to the eigenvalue ``w[i]``.
586+ A namedtuple with the following attributes:
587+
588+ eigenvalues : (..., M) dpnp.ndarray
589+ The eigenvalues in ascending order, each repeated according to its
590+ multiplicity.
591+ eigenvectors : (..., M, M) dpnp.ndarray
592+ The column ``eigenvectors[:, i]`` is the normalized eigenvector
593+ corresponding to the eigenvalue ``eigenvalues[i]``.
591594
592595 See Also
593596 --------
@@ -661,7 +664,7 @@ def eigvals(a):
661664 Illustration, using the fact that the eigenvalues of a diagonal matrix
662665 are its diagonal elements, that multiplying a matrix on the left
663666 by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
664- of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
667+ of `Q`), preserves the eigenvalues of the "middle" matrix. In other words,
665668 if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
666669 ``A``:
667670
@@ -856,7 +859,7 @@ def lstsq(a, b, rcond=None):
856859 gradient of roughly 1 and cut the y-axis at, more or less, -1.
857860
858861 We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
859- and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
862+ and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`:
860863
861864 >>> A = np.vstack([x, np.ones(len(x))]).T
862865 >>> A
@@ -1269,7 +1272,7 @@ def norm(x, ord=None, axis=None, keepdims=False):
12691272 Parameters
12701273 ----------
12711274 x : {dpnp.ndarray, usm_ndarray}
1272- Input array. If `axis` is ``None``, `x` must be 1-D or 2-D, unless
1275+ Input array. If `axis` is ``None``, `x` must be 1-D or 2-D, unless
12731276 `ord` is ``None``. If both `axis` and `ord` are ``None``, the 2-norm
12741277 of ``x.ravel`` will be returned.
12751278 ord : {int, float, inf, -inf, "fro", "nuc"}, optional
@@ -1574,20 +1577,22 @@ def qr(a, mode="reduced"):
15741577 Returns
15751578 -------
15761579 When mode is "reduced" or "complete", the result will be a namedtuple with
1577- the attributes Q and R.
1578- Q : dpnp.ndarray
1580+ the attributes `Q` and `R`.
1581+
1582+ Q : dpnp.ndarray of float or complex, optional
15791583 A matrix with orthonormal columns.
1580- When mode = "complete" the result is an orthogonal/unitary matrix
1581- depending on whether or not a is real/complex.
1582- The determinant may be either +/- 1 in that case.
1583- In case the number of dimensions in the input array is greater
1584- than 2 then a stack of the matrices with above properties is returned.
1585- R : dpnp.ndarray
1586- The upper-triangular matrix or a stack of upper-triangular matrices
1587- if the number of dimensions in the input array is greater than 2.
1588- (h, tau) : tuple of dpnp.ndarray
1589- The `h` array contains the Householder reflectors that generate Q along
1590- with R. The `tau` array contains scaling factors for the reflectors.
1584+ When mode is ``"complete"`` the result is an orthogonal/unitary matrix
1585+ depending on whether or not `a` is real/complex. The determinant may be
1586+ either ``+/- 1`` in that case. In case the number of dimensions in the
1587+ input array is greater than 2 then a stack of the matrices with above
1588+ properties is returned.
1589+ R : dpnp.ndarray of float or complex, optional
1590+ The upper-triangular matrix or a stack of upper-triangular matrices if
1591+ the number of dimensions in the input array is greater than 2.
1592+ (h, tau) : tuple of dpnp.ndarray of float or complex, optional
1593+ The array `h` contains the Householder reflectors that generate `Q`
1594+ along with `R`. The `tau` array contains scaling factors for the
1595+ reflectors.
15911596
15921597 Examples
15931598 --------
@@ -1726,22 +1731,25 @@ def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
17261731
17271732 Returns
17281733 -------
1729- u : { (…, M, M), (…, M, K) } dpnp.ndarray
1734+ When `compute_uv` is ``True``, the result is a namedtuple with the
1735+ following attribute names:
1736+
1737+ U : { (…, M, M), (…, M, K) } dpnp.ndarray
17301738 Unitary matrix, where M is the number of rows of the input array `a`.
1731- The shape of the matrix `u ` depends on the value of `full_matrices`.
1732- If `full_matrices` is ``True``, `u ` has the shape (…, M, M).
1733- If `full_matrices` is ``False``, `u ` has the shape (…, M, K), where
1734- K = min(M, N), and N is the number of columns of the input array `a`.
1735- If `compute_uv` is ``False``, neither `u ` or `Vh` are computed.
1736- s : (…, K) dpnp.ndarray
1739+ The shape of the matrix `U ` depends on the value of `full_matrices`.
1740+ If `full_matrices` is ``True``, `U ` has the shape (…, M, M). If
1741+ `full_matrices` is ``False``, `U ` has the shape (…, M, K), where
1742+ `` K = min(M, N)`` , and N is the number of columns of the input array
1743+ `a`. If `compute_uv` is ``False``, neither `U ` or `Vh` are computed.
1744+ S : (…, K) dpnp.ndarray
17371745 Vector containing the singular values of `a`, sorted in descending
1738- order. The length of `s ` is min(M, N).
1746+ order. The length of `S ` is min(M, N).
17391747 Vh : { (…, N, N), (…, K, N) } dpnp.ndarray
17401748 Unitary matrix, where N is the number of columns of the input array `a`.
17411749 The shape of the matrix `Vh` depends on the value of `full_matrices`.
17421750 If `full_matrices` is ``True``, `Vh` has the shape (…, N, N).
17431751 If `full_matrices` is ``False``, `Vh` has the shape (…, K, N).
1744- If `compute_uv` is ``False``, neither `u ` or `Vh` are computed.
1752+ If `compute_uv` is ``False``, neither `U ` or `Vh` are computed.
17451753
17461754 Examples
17471755 --------
@@ -1869,6 +1877,8 @@ def slogdet(a):
18691877
18701878 Returns
18711879 -------
1880+ A namedtuple with the following attributes:
1881+
18721882 sign : (...) dpnp.ndarray
18731883 A number representing the sign of the determinant. For a real matrix,
18741884 this is 1, 0, or -1. For a complex matrix, this is a complex number
0 commit comments