diff --git a/CHANGELOG.md b/CHANGELOG.md index d8d37ac22781..1115e80b3243 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -41,7 +41,7 @@ In addition, this release completes implementation of `dpnp.fft` module and adds * Added implementation of `dpnp.resize` and `dpnp.rot90` functions [#2030](https://github.com/IntelPython/dpnp/pull/2030) * Added implementation of `dpnp.require` function [#2036](https://github.com/IntelPython/dpnp/pull/2036) -### Change +### Changed * Extended pre-commit pylint check to `dpnp.fft` module [#1860](https://github.com/IntelPython/dpnp/pull/1860) * Reworked `vm` vector math backend to reuse `dpctl.tensor` functions around unary and binary functions [#1868](https://github.com/IntelPython/dpnp/pull/1868) @@ -105,6 +105,7 @@ In addition, this release completes implementation of `dpnp.fft` module and adds * Updated `dpnp.fft` backend to depend on `INTEL_MKL_VERSION` flag to ensures that the appropriate code segment is executed based on the version of OneMKL [#2035](https://github.com/IntelPython/dpnp/pull/2035) * Use `dpctl::tensor::alloc_utils::sycl_free_noexcept` instead of `sycl::free` in `host_task` tasks associated with life-time management of temporary USM allocations [#2058](https://github.com/IntelPython/dpnp/pull/2058) * Improved implementation of `dpnp.kron` to avoid unnecessary copy for non-contiguous arrays [#2059](https://github.com/IntelPython/dpnp/pull/2059) +* Updated the test suit for `dpnp.fft` module [#2071](https://github.com/IntelPython/dpnp/pull/2071) ### Fixed diff --git a/pyproject.toml b/pyproject.toml index 5b8c944b2c98..6c0cb342d446 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -16,6 +16,7 @@ exclude-protected = ["_create_from_usm_ndarray"] [tool.pylint.design] max-args = 11 +max-positional-arguments = 9 max-locals = 30 max-branches = 15 max-returns = 8 diff --git a/tests/test_fft.py b/tests/test_fft.py index c6f33fb71f72..ddc9623611a8 100644 --- a/tests/test_fft.py +++ b/tests/test_fft.py @@ -564,10 +564,13 @@ def test_fftn_out(self, axes, s): assert_dtype_allclose(iresult, iexpected, check_only_type_kind=True) def test_negative_s(self): - # stock NumPy 2.0, if s is -1, the whole input is used (no padding/trimming). - a_np = numpy.empty((3, 4, 5), dtype=numpy.complex64) + x1 = numpy.random.uniform(-10, 10, 60) + x2 = numpy.random.uniform(-10, 10, 60) + a_np = numpy.array(x1 + 1j * x2, dtype=numpy.complex64).reshape(3, 4, 5) a = dpnp.array(a_np) + # For dpnp and stock NumPy 2.0, if s is -1, the whole input is used + # (no padding or trimming). result = dpnp.fft.fftn(a, s=(-1, -1), axes=(0, 2)) expected = numpy.fft.fftn(a_np, s=(3, 5), axes=(0, 2)) assert_dtype_allclose(result, expected, check_only_type_kind=True)