|
| 1 | +#!/usr/bin/env python |
| 2 | +# Copyright (c) 2017, Intel Corporation |
| 3 | +# |
| 4 | +# Redistribution and use in source and binary forms, with or without |
| 5 | +# modification, are permitted provided that the following conditions are met: |
| 6 | +# |
| 7 | +# * Redistributions of source code must retain the above copyright notice, |
| 8 | +# this list of conditions and the following disclaimer. |
| 9 | +# * Redistributions in binary form must reproduce the above copyright |
| 10 | +# notice, this list of conditions and the following disclaimer in the |
| 11 | +# documentation and/or other materials provided with the distribution. |
| 12 | +# * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | +# may be used to endorse or promote products derived from this software |
| 14 | +# without specific prior written permission. |
| 15 | +# |
| 16 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 19 | +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE |
| 20 | +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 21 | +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 22 | +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 23 | +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 24 | +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 25 | +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | + |
| 27 | +from __future__ import division, absolute_import, print_function |
| 28 | + |
| 29 | +import numpy as np |
| 30 | +from numpy.testing import ( |
| 31 | + TestCase, run_module_suite, assert_, assert_raises, assert_equal, |
| 32 | + assert_warns, assert_allclose) |
| 33 | +from numpy import random as rnd |
| 34 | +import sys |
| 35 | +import warnings |
| 36 | + |
| 37 | +import mkl_fft |
| 38 | +import numpy.fft.fftpack as np_fft |
| 39 | + |
| 40 | +reps_64 = (2**11)*np.finfo(np.float64).eps |
| 41 | +reps_32 = (2**11)*np.finfo(np.float32).eps |
| 42 | +atol_64 = (2**8)*np.finfo(np.float64).eps |
| 43 | +atol_32 = (2**8)*np.finfo(np.float32).eps |
| 44 | + |
| 45 | +def _get_rtol_atol(x): |
| 46 | + dt = x.dtype |
| 47 | + if dt == np.double or dt == np.complex128: |
| 48 | + return reps_64, atol_64 |
| 49 | + elif dt == np.single or dt == np.complex64: |
| 50 | + return reps_32, atol_32 |
| 51 | + else: |
| 52 | + assert (dt == np.double or dt == np.complex128 or dt == np.single or dt == np.complex64), "Unexpected dtype {}".format(dt) |
| 53 | + return reps_64, atol_64 |
| 54 | + |
| 55 | + |
| 56 | +class Test_mklfft_matrix(TestCase): |
| 57 | + def setUp(self): |
| 58 | + rnd.seed(123456) |
| 59 | + self.md = rnd.randn(256, 256) |
| 60 | + self.mf = self.md.astype(np.float32) |
| 61 | + self.mz = rnd.randn(256, 256*2).view(np.complex128) |
| 62 | + self.mc = self.mz.astype(np.complex64) |
| 63 | + |
| 64 | + def test_matrix1(self): |
| 65 | + """fftn equals repeated fft""" |
| 66 | + for ar in [self.md, self.mz, self.mf, self.mc]: |
| 67 | + r_tol, a_tol = _get_rtol_atol(ar) |
| 68 | + d = ar.copy() |
| 69 | + t1 = mkl_fft.fftn(d) |
| 70 | + t2 = mkl_fft.fft(mkl_fft.fft(d, axis=0), axis=1) |
| 71 | + t3 = mkl_fft.fft(mkl_fft.fft(d, axis=1), axis=0) |
| 72 | + assert_allclose(t1, t2, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(t1-t2)))) |
| 73 | + assert_allclose(t1, t3, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(t1-t3)))) |
| 74 | + |
| 75 | + def test_matrix2(self): |
| 76 | + """ifftn(fftn(x)) is x""" |
| 77 | + for ar in [self.md, self.mz, self.mf, self.mc]: |
| 78 | + d = ar.copy() |
| 79 | + r_tol, a_tol = _get_rtol_atol(d) |
| 80 | + t = mkl_fft.ifftn(mkl_fft.fftn(d)) |
| 81 | + assert_allclose(d, t, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(d-t)))) |
| 82 | + |
| 83 | + def test_matrix3(self): |
| 84 | + """fftn(ifftn(x)) is x""" |
| 85 | + for ar in [self.md, self.mz, self.mf, self.mc]: |
| 86 | + d = ar.copy() |
| 87 | + r_tol, a_tol = _get_rtol_atol(d) |
| 88 | + t = mkl_fft.fftn(mkl_fft.ifftn(d)) |
| 89 | + assert_allclose(d, t, rtol=r_tol, atol=a_tol, err_msg = "failed test for dtype {}, max abs diff: {}".format(d.dtype, np.max(np.abs(d-t)))) |
| 90 | + |
| 91 | + |
| 92 | + def test_matrix4(self): |
| 93 | + """fftn of strided array is same as fftn of a contiguous copy""" |
| 94 | + for ar in [self.md, self.mz, self.mf, self.mc]: |
| 95 | + r_tol, a_tol = _get_rtol_atol(ar) |
| 96 | + d_strided = ar[::2,::2] |
| 97 | + d_contig = d_strided.copy() |
| 98 | + t_strided = mkl_fft.fftn(d_strided) |
| 99 | + t_contig = mkl_fft.fftn(d_contig) |
| 100 | + assert_allclose(t_strided, t_contig, rtol=r_tol, atol=a_tol) |
| 101 | + |
| 102 | + |
| 103 | +class Test_Regressions(TestCase): |
| 104 | + |
| 105 | + def setUp(self): |
| 106 | + rnd.seed(123456) |
| 107 | + self.ad = rnd.randn(32, 17, 23) |
| 108 | + self.af = self.ad.astype(np.float32) |
| 109 | + self.az = rnd.randn(32, 17, 23*2).view(np.complex128) |
| 110 | + self.ac = self.az.astype(np.complex64) |
| 111 | + |
| 112 | + def test_cf_contig(self): |
| 113 | + """fft of F-contiguous array is the same as of C-contiguous with same data""" |
| 114 | + for ar in [self.ad, self.af, self.az, self.ac]: |
| 115 | + r_tol, a_tol = _get_rtol_atol(ar) |
| 116 | + d_ccont = ar.copy() |
| 117 | + d_fcont = np.asfortranarray(d_ccont) |
| 118 | + f1 = mkl_fft.fft(d_ccont) |
| 119 | + f2 = mkl_fft.fft(d_fcont) |
| 120 | + assert_allclose(f1, f2, rtol=r_tol, atol=a_tol) |
0 commit comments