|
| 1 | +{ |
| 2 | + "common": { |
| 3 | + "lib": "modelbuilders", |
| 4 | + "data-format": "pandas", |
| 5 | + "data-order": "F", |
| 6 | + "grow-policy": "Depthwise", |
| 7 | + "dtype": "float32", |
| 8 | + "algorithm": "catboost_mb", |
| 9 | + "count-pool": "", |
| 10 | + "max-depth": 8, |
| 11 | + "learning-rate": 0.1, |
| 12 | + "reg-lambda": 1, |
| 13 | + "max-leaves": 256 |
| 14 | + }, |
| 15 | + "cases": [ |
| 16 | + { |
| 17 | + "dataset": [ |
| 18 | + { |
| 19 | + "source": "npy", |
| 20 | + "name": "abalone", |
| 21 | + "training": { |
| 22 | + "x": "data/abalone_x_train.npy", |
| 23 | + "y": "data/abalone_y_train.npy" |
| 24 | + }, |
| 25 | + "testing": { |
| 26 | + "x": "data/abalone_x_test.npy", |
| 27 | + "y": "data/abalone_y_test.npy" |
| 28 | + } |
| 29 | + } |
| 30 | + ], |
| 31 | + "learning-rate": 0.03, |
| 32 | + "max-depth": 6, |
| 33 | + "n-estimators": 1000, |
| 34 | + "objective": "RMSE" |
| 35 | + }, |
| 36 | + { |
| 37 | + "dataset": [ |
| 38 | + { |
| 39 | + "source": "npy", |
| 40 | + "name": "airline-ohe", |
| 41 | + "training": { |
| 42 | + "x": "data/airline-ohe_x_train.npy", |
| 43 | + "y": "data/airline-ohe_y_train.npy" |
| 44 | + }, |
| 45 | + "testing": { |
| 46 | + "x": "data/airline-ohe_x_test.npy", |
| 47 | + "y": "data/airline-ohe_y_test.npy" |
| 48 | + } |
| 49 | + } |
| 50 | + ], |
| 51 | + "max-bin": 256, |
| 52 | + "scale-pos-weight": 2, |
| 53 | + "subsample": 1, |
| 54 | + "n-estimators": 1000, |
| 55 | + "objective": "Logloss" |
| 56 | + }, |
| 57 | + { |
| 58 | + "dataset": [ |
| 59 | + { |
| 60 | + "source": "npy", |
| 61 | + "name": "higgs1m", |
| 62 | + "training": { |
| 63 | + "x": "data/higgs1m_x_train.npy", |
| 64 | + "y": "data/higgs1m_y_train.npy" |
| 65 | + }, |
| 66 | + "testing": { |
| 67 | + "x": "data/higgs1m_x_test.npy", |
| 68 | + "y": "data/higgs1m_y_test.npy" |
| 69 | + } |
| 70 | + } |
| 71 | + ], |
| 72 | + "max-bin": 256, |
| 73 | + "scale-pos-weight": 2, |
| 74 | + "subsample": 1, |
| 75 | + "n-estimators": [100, 300, 1000, 3000], |
| 76 | + "objective": "Logloss" |
| 77 | + }, |
| 78 | + { |
| 79 | + "dataset": [ |
| 80 | + { |
| 81 | + "source": "npy", |
| 82 | + "name": "letters", |
| 83 | + "training": { |
| 84 | + "x": "data/letters_x_train.npy", |
| 85 | + "y": "data/letters_y_train.npy" |
| 86 | + }, |
| 87 | + "testing": { |
| 88 | + "x": "data/letters_x_test.npy", |
| 89 | + "y": "data/letters_y_test.npy" |
| 90 | + } |
| 91 | + } |
| 92 | + ], |
| 93 | + "learning-rate": 0.03, |
| 94 | + "max-depth": 6, |
| 95 | + "max-leaves": 0, |
| 96 | + "n-estimators": 1000, |
| 97 | + "objective": "multi:softprob" |
| 98 | + }, |
| 99 | + { |
| 100 | + "dataset": [ |
| 101 | + { |
| 102 | + "source": "npy", |
| 103 | + "name": "mlsr", |
| 104 | + "training": { |
| 105 | + "x": "data/mlsr_x_train.npy", |
| 106 | + "y": "data/mlsr_y_train.npy" |
| 107 | + } |
| 108 | + } |
| 109 | + ], |
| 110 | + "max-bin": 256, |
| 111 | + "learning-rate": 0.3, |
| 112 | + "subsample": 1, |
| 113 | + "reg-lambda": 2, |
| 114 | + "n-estimators": 200, |
| 115 | + "objective": "multi:softprob" |
| 116 | + }, |
| 117 | + { |
| 118 | + "dataset": [ |
| 119 | + { |
| 120 | + "source": "npy", |
| 121 | + "name": "mortgage1Q", |
| 122 | + "training": { |
| 123 | + "x": "data/mortgage1Q_x_train.npy", |
| 124 | + "y": "data/mortgage1Q_y_train.npy" |
| 125 | + } |
| 126 | + } |
| 127 | + ], |
| 128 | + "n-estimators": 100, |
| 129 | + "objective": "RMSE", |
| 130 | + "scale-pos-weight": 2, |
| 131 | + "subsample": 1 |
| 132 | + }, |
| 133 | + { |
| 134 | + "dataset": [ |
| 135 | + { |
| 136 | + "source": "npy", |
| 137 | + "name": "plasticc", |
| 138 | + "training": { |
| 139 | + "x": "data/plasticc_x_train.npy", |
| 140 | + "y": "data/plasticc_y_train.npy" |
| 141 | + }, |
| 142 | + "testing": { |
| 143 | + "x": "data/plasticc_x_test.npy", |
| 144 | + "y": "data/plasticc_y_test.npy" |
| 145 | + } |
| 146 | + } |
| 147 | + ], |
| 148 | + "learning-rate": 0.3, |
| 149 | + "n-estimators": 60, |
| 150 | + "objective": "multi:softprob", |
| 151 | + "max-depth": 7, |
| 152 | + "max-leaves": 0, |
| 153 | + "subsample": 0.7 |
| 154 | + }, |
| 155 | + { |
| 156 | + "dataset": [ |
| 157 | + { |
| 158 | + "source": "npy", |
| 159 | + "name": "santander", |
| 160 | + "training": { |
| 161 | + "x": "data/santander_x_train.npy", |
| 162 | + "y": "data/santander_y_train.npy" |
| 163 | + }, |
| 164 | + "testing": { |
| 165 | + "x": "data/santander_x_test.npy", |
| 166 | + "y": "data/santander_y_test.npy" |
| 167 | + } |
| 168 | + } |
| 169 | + ], |
| 170 | + "learning-rate": 0.3, |
| 171 | + "n-estimators": 10000, |
| 172 | + "objective": "Logloss", |
| 173 | + "max-depth": 1, |
| 174 | + "max-leaves": 0, |
| 175 | + "subsample": 0.5, |
| 176 | + "eta": 0.1 |
| 177 | + }, |
| 178 | + { |
| 179 | + "objective": "Logloss", |
| 180 | + "scale-pos-weight": 2.1067817411664587, |
| 181 | + "dataset": [ |
| 182 | + { |
| 183 | + "source": "npy", |
| 184 | + "name": "airline", |
| 185 | + "training": { |
| 186 | + "x": "data/airline_x_train.npy", |
| 187 | + "y": "data/airline_y_train.npy" |
| 188 | + }, |
| 189 | + "testing": { |
| 190 | + "x": "data/airline_x_test.npy", |
| 191 | + "y": "data/airline_y_test.npy" |
| 192 | + } |
| 193 | + } |
| 194 | + ] |
| 195 | + }, |
| 196 | + { |
| 197 | + "objective": "Logloss", |
| 198 | + "scale-pos-weight": 173.63348001466812, |
| 199 | + "dataset": [ |
| 200 | + { |
| 201 | + "source": "npy", |
| 202 | + "name": "bosch", |
| 203 | + "training": { |
| 204 | + "x": "data/bosch_x_train.npy", |
| 205 | + "y": "data/bosch_y_train.npy" |
| 206 | + }, |
| 207 | + "testing": { |
| 208 | + "x": "data/bosch_x_test.npy", |
| 209 | + "y": "data/bosch_y_test.npy" |
| 210 | + } |
| 211 | + } |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "dataset": [ |
| 216 | + { |
| 217 | + "source": "npy", |
| 218 | + "name": "covtype", |
| 219 | + "training": { |
| 220 | + "x": "data/covtype_x_train.npy", |
| 221 | + "y": "data/covtype_y_train.npy" |
| 222 | + }, |
| 223 | + "testing": { |
| 224 | + "x": "data/covtype_x_test.npy", |
| 225 | + "y": "data/covtype_y_test.npy" |
| 226 | + } |
| 227 | + } |
| 228 | + ], |
| 229 | + "objective": "multi:softprob", |
| 230 | + "n-estimators": 100 |
| 231 | + }, |
| 232 | + { |
| 233 | + "objective": "Logloss", |
| 234 | + "scale-pos-weight": 2.0017715678375363, |
| 235 | + "dataset": [ |
| 236 | + { |
| 237 | + "source": "npy", |
| 238 | + "name": "epsilon", |
| 239 | + "training": { |
| 240 | + "x": "data/epsilon_x_train.npy", |
| 241 | + "y": "data/epsilon_y_train.npy" |
| 242 | + }, |
| 243 | + "testing": { |
| 244 | + "x": "data/epsilon_x_test.npy", |
| 245 | + "y": "data/epsilon_y_test.npy" |
| 246 | + } |
| 247 | + } |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "objective": "Logloss", |
| 252 | + "scale-pos-weight": 578.2868020304569, |
| 253 | + "dataset": [ |
| 254 | + { |
| 255 | + "source": "npy", |
| 256 | + "name": "fraud", |
| 257 | + "training": { |
| 258 | + "x": "data/fraud_x_train.npy", |
| 259 | + "y": "data/fraud_y_train.npy" |
| 260 | + }, |
| 261 | + "testing": { |
| 262 | + "x": "data/fraud_x_test.npy", |
| 263 | + "y": "data/fraud_y_test.npy" |
| 264 | + } |
| 265 | + } |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "objective": "Logloss", |
| 270 | + "scale-pos-weight": 1.8872389605086624, |
| 271 | + "dataset": [ |
| 272 | + { |
| 273 | + "source": "npy", |
| 274 | + "name": "higgs", |
| 275 | + "training": { |
| 276 | + "x": "data/higgs_x_train.npy", |
| 277 | + "y": "data/higgs_y_train.npy" |
| 278 | + }, |
| 279 | + "testing": { |
| 280 | + "x": "data/higgs_x_test.npy", |
| 281 | + "y": "data/higgs_y_test.npy" |
| 282 | + } |
| 283 | + } |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "objective": "RMSE", |
| 288 | + "dataset": [ |
| 289 | + { |
| 290 | + "source": "npy", |
| 291 | + "name": "year_prediction_msd", |
| 292 | + "training": { |
| 293 | + "x": "data/year_prediction_msd_x_train.npy", |
| 294 | + "y": "data/year_prediction_msd_y_train.npy" |
| 295 | + }, |
| 296 | + "testing": { |
| 297 | + "x": "data/year_prediction_msd_x_test.npy", |
| 298 | + "y": "data/year_prediction_msd_y_test.npy" |
| 299 | + } |
| 300 | + } |
| 301 | + ] |
| 302 | + } |
| 303 | + ] |
| 304 | +} |
0 commit comments