@@ -37,21 +37,25 @@ def print_output(library, algorithm, stages, columns, params, functions,
37
37
accuracy = accuracies [i ])
38
38
elif params .output_format == 'json' :
39
39
output = []
40
+ output .append ({
41
+ 'library' : library ,
42
+ 'algorithm' : algorithm ,
43
+ 'input_data' : {
44
+ 'data_format' : params .data_format ,
45
+ 'data_order' : params .data_order ,
46
+ 'data_type' : str (params .dtype ),
47
+ 'dataset_name' : params .dataset_name ,
48
+ 'rows' : data [0 ].shape [0 ],
49
+ 'columns' : data [0 ].shape [1 ]
50
+ }
51
+ })
52
+ if hasattr (params , 'n_classes' ):
53
+ output [- 1 ]['input_data' ].update ({'classes' : params .n_classes })
40
54
for i in range (len (stages )):
41
55
result = {
42
- 'library' : library ,
43
- 'algorithm' : algorithm ,
44
56
'stage' : stages [i ],
45
- 'input_data' : {
46
- 'data_format' : params .data_format ,
47
- 'data_order' : params .data_order ,
48
- 'data_type' : str (params .dtype ),
49
- 'dataset_name' : params .dataset_name ,
50
- 'rows' : data [i ].shape [0 ],
51
- 'columns' : data [i ].shape [1 ]
52
- }
53
57
}
54
- if stages [i ] == 'daal4py_predict' :
58
+ if 'daal' in stages [i ]:
55
59
result .update ({'conversion_to_daal4py' : times [2 * i ],
56
60
'prediction_time' : times [2 * i + 1 ]})
57
61
elif 'train' in stages [i ]:
@@ -62,7 +66,5 @@ def print_output(library, algorithm, stages, columns, params, functions,
62
66
'prediction_time' : times [2 * i + 1 ]})
63
67
if accuracies [i ] is not None :
64
68
result .update ({f'{ accuracy_type } ' : accuracies [i ]})
65
- if hasattr (params , 'n_classes' ):
66
- result ['input_data' ].update ({'classes' : params .n_classes })
67
69
output .append (result )
68
70
print (json .dumps (output , indent = 4 ))
0 commit comments