@@ -347,27 +347,31 @@ def ndarray_function(x, y):
347
347
x [i * batch_size : (i + 1 ) * batch_size ],
348
348
y [i * batch_size : (i + 1 ) * batch_size ],
349
349
)
350
- estimator_instance ._onedal_finalize_fit ()
350
+ if hasattr (estimator_instance , "_onedal_finalize_fit" ):
351
+ estimator_instance ._onedal_finalize_fit ()
351
352
352
353
def dataframe_function (x , y ):
353
354
for i in range (n_batches ):
354
355
method_instance (
355
356
x .iloc [i * batch_size : (i + 1 ) * batch_size ],
356
357
y .iloc [i * batch_size : (i + 1 ) * batch_size ],
357
358
)
358
- estimator_instance ._onedal_finalize_fit ()
359
+ if hasattr (estimator_instance , "_onedal_finalize_fit" ):
360
+ estimator_instance ._onedal_finalize_fit ()
359
361
360
362
else :
361
363
362
364
def ndarray_function (x ):
363
365
for i in range (n_batches ):
364
366
method_instance (x [i * batch_size : (i + 1 ) * batch_size ])
365
- estimator_instance ._onedal_finalize_fit ()
367
+ if hasattr (estimator_instance , "_onedal_finalize_fit" ):
368
+ estimator_instance ._onedal_finalize_fit ()
366
369
367
370
def dataframe_function (x ):
368
371
for i in range (n_batches ):
369
372
method_instance (x .iloc [i * batch_size : (i + 1 ) * batch_size ])
370
- estimator_instance ._onedal_finalize_fit ()
373
+ if hasattr (estimator_instance , "_onedal_finalize_fit" ):
374
+ estimator_instance ._onedal_finalize_fit ()
371
375
372
376
if "ndarray" in str (type (data_args [0 ])):
373
377
return ndarray_function
0 commit comments