You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"Sparse" elements are treated as if they were "missing" by the tree booster, and as zeros by the linear booster. However, if we convert the sparse matrix back to dense matrix, the sparse matrix might fill the missing entries with 0, which is a valid value for xgboost.
78
+
"Sparse" elements are treated as if they were "missing" by the tree booster, and as zeros by the linear booster. However, if we convert the sparse matrix back to dense matrix, the sparse matrix might fill the missing entries with 0, which is a valid value for xgboost. In short, sparse matrix implementations like scipy treats 0 as missing, while 0 is a valid split value for XGBoost decision trees.
0 commit comments