Skip to content

Commit 6898a12

Browse files
committed
fix: formatting
1 parent 307be81 commit 6898a12

File tree

2 files changed

+37
-24
lines changed

2 files changed

+37
-24
lines changed

scripts/metrics/compute_overall_map.py

Lines changed: 17 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -65,8 +65,18 @@
6565
"BasketballDrive_1920x1080_50",
6666
"BQTerrace_1920x1080_60",
6767
],
68-
CLASSES[1]: ["BasketballDrill_832x480_50", "BQMall_832x480_60", "PartyScene_832x480_50", "RaceHorses_832x480_832x480_30"],
69-
CLASSES[2]: ["BasketballPass_416x240_50", "BQSquare_416x240_60", "BlowingBubbles_416x240_50", "RaceHorses_416x240_30"],
68+
CLASSES[1]: [
69+
"BasketballDrill_832x480_50",
70+
"BQMall_832x480_60",
71+
"PartyScene_832x480_50",
72+
"RaceHorses_832x480_832x480_30",
73+
],
74+
CLASSES[2]: [
75+
"BasketballPass_416x240_50",
76+
"BQSquare_416x240_60",
77+
"BlowingBubbles_416x240_50",
78+
"RaceHorses_416x240_30",
79+
],
7080
CLASSES[3]: ["ns_Traffic_2560x1600_30", "ns_BQTerrace_1920x1080_60"],
7181
}
7282

@@ -90,17 +100,19 @@
90100
TMP_EVAL_FILE = "tmp_eval.json"
91101
TMP_ANCH_FILE = "tmp_anch.json"
92102

93-
NS_SEQ_PREFIX = "ns_" # Prefix of non-scaled sequences
103+
NS_SEQ_PREFIX = "ns_" # Prefix of non-scaled sequences
94104

95-
def compute_overall_mAP(seq_root_names, items):
96105

106+
def compute_overall_mAP(seq_root_names, items):
97107
classwise_instances_results = []
98108
classwise_anchor_images = []
99109
classwise_annotation = []
100110
categories = None
101111
annotation_id = 0
102112
for e, (item, root_name) in enumerate(zip(items, seq_root_names)):
103-
assert root_name in item[utils.SEQ_NAME_KEY], f"Not found {root_name} in {item[utils.SEQ_NAME_KEY]} {utils.SEQ_NAME_KEY}"
113+
assert (
114+
root_name in item[utils.SEQ_NAME_KEY]
115+
), f"Not found {root_name} in {item[utils.SEQ_NAME_KEY]} {utils.SEQ_NAME_KEY}"
104116

105117
root_name = root_name.replace(NS_SEQ_PREFIX, "")
106118

scripts/metrics/gen_mpeg_cttc_csv.py

Lines changed: 20 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -73,13 +73,16 @@ def read_df_rec(
7373
unique_seq_names = list(np.unique(seq_names))
7474
for sequence in unique_seq_names:
7575
assert (
76-
len([f for f in all_summary_csvs if sequence in f]) == nb_operation_points
76+
len([f for f in all_summary_csvs if sequence in f])
77+
== nb_operation_points
7778
), f"Did not find {nb_operation_points} results for {sequence}"
7879

7980
# Only include specified sequences
8081
matched_summary_csvs = []
8182
for seq in seq_list:
82-
matched = [f"{dataset_prefix}{seq}" in summary_csv for summary_csv in all_summary_csvs]
83+
matched = [
84+
f"{dataset_prefix}{seq}" in summary_csv for summary_csv in all_summary_csvs
85+
]
8386
found_at_least_one = False
8487
for idx, match in enumerate(matched):
8588
if match:
@@ -180,9 +183,7 @@ def generate_csv_classwise_video_map(
180183
[seq_list.extend(sequences) for sequences in dict_of_classwise_seq.values()]
181184

182185
opts_metrics = {"AP": 0, "AP50": 1, "AP75": 2, "APS": 3, "APM": 4, "APL": 5}
183-
results_df = read_df_rec(
184-
result_path, dataset_prefix, seq_list, nb_operation_points
185-
)
186+
results_df = read_df_rec(result_path, dataset_prefix, seq_list, nb_operation_points)
186187

187188
# sort
188189
sorterIndex = dict(zip(seq_list, range(len(seq_list))))
@@ -195,7 +196,6 @@ def generate_csv_classwise_video_map(
195196
output_df.drop(columns=["fps", "num_of_coded_frame"], inplace=True)
196197

197198
for classwise_name, classwise_seqs in dict_of_classwise_seq.items():
198-
199199
class_wise_maps = []
200200
for q in range(nb_operation_points):
201201
items = utils.search_items(
@@ -215,7 +215,9 @@ def generate_csv_classwise_video_map(
215215
), "No evaluation information found in provided result directories..."
216216

217217
if not skip_classwise:
218-
summary = compute_overall_mAP(dict_of_classwise_seq[classwise_name], items)
218+
summary = compute_overall_mAP(
219+
dict_of_classwise_seq[classwise_name], items
220+
)
219221
maps = summary.values[0][opts_metrics[metric]]
220222
class_wise_maps.append(maps)
221223

@@ -240,9 +242,7 @@ def generate_csv_classwise_video_mota(
240242
seq_list = []
241243
[seq_list.extend(sequences) for sequences in dict_of_classwise_seq.values()]
242244

243-
results_df = read_df_rec(
244-
result_path, dataset_prefix, seq_list, nb_operation_points
245-
)
245+
results_df = read_df_rec(result_path, dataset_prefix, seq_list, nb_operation_points)
246246
results_df = results_df.sort_values(by=["Dataset", "qp"], ascending=[True, True])
247247

248248
# accuracy in % for MPEG template
@@ -253,7 +253,6 @@ def generate_csv_classwise_video_mota(
253253
output_df.drop(columns=["fps", "num_of_coded_frame"], inplace=True)
254254

255255
for classwise_name, classwise_seqs in dict_of_classwise_seq.items():
256-
257256
class_wise_motas = []
258257
for q in range(nb_operation_points):
259258
items = utils.search_items(
@@ -290,14 +289,12 @@ def generate_csv_classwise_video_miou(
290289
dataset_path,
291290
dict_of_classwise_seq,
292291
nb_operation_points: int = 4,
293-
dataset_prefix : str = None,
292+
dataset_prefix: str = None,
294293
):
295294
seq_list = []
296295
[seq_list.extend(sequences) for sequences in dict_of_classwise_seq.values()]
297296

298-
results_df = read_df_rec(
299-
result_path, "", seq_list, nb_operation_points
300-
)
297+
results_df = read_df_rec(result_path, "", seq_list, nb_operation_points)
301298

302299
# sort
303300
sorterIndex = dict(zip(seq_list, range(len(seq_list))))
@@ -310,7 +307,6 @@ def generate_csv_classwise_video_miou(
310307
output_df.drop(columns=["fps", "num_of_coded_frame"], inplace=True)
311308

312309
for classwise_name, classwise_seqs in dict_of_classwise_seq.items():
313-
314310
class_wise_mious = []
315311
# rate_range = [-1] if nb_operation_points == 1 else range(nb_operation_points)
316312
for q in range(nb_operation_points):
@@ -457,7 +453,12 @@ def generate_csv(result_path, seq_list, nb_operation_points):
457453
class_ab["CLASS-AB"].remove("Cactus_1920x1080_50")
458454

459455
class_c = {
460-
"CLASS-C": ["BasketballDrill_832x480_50", "BQMall_832x480_60", "PartyScene_832x480_50", "RaceHorses_832x480_30"]
456+
"CLASS-C": [
457+
"BasketballDrill_832x480_50",
458+
"BQMall_832x480_60",
459+
"PartyScene_832x480_50",
460+
"RaceHorses_832x480_30",
461+
]
461462
}
462463
class_d = {
463464
"CLASS-D": [
@@ -558,7 +559,7 @@ def generate_csv(result_path, seq_list, nb_operation_points):
558559
elif args.dataset_name == "HIEVE":
559560
hieve = {
560561
"HIEVE-1080P": ["hieve-13", "hieve-16"],
561-
"HIEVE-720P": ["hieve-17", "hieve-18", "hieve-2"]
562+
"HIEVE-720P": ["hieve-17", "hieve-18", "hieve-2"],
562563
}
563564
output_df = generate_csv_classwise_video_mota(
564565
norm_result_path,
@@ -610,7 +611,7 @@ def generate_csv(result_path, seq_list, nb_operation_points):
610611
"119",
611612
"122",
612613
"124",
613-
]
614+
],
614615
}
615616

616617
output_df = generate_csv_classwise_video_miou(

0 commit comments

Comments
 (0)