@@ -73,13 +73,16 @@ def read_df_rec(
7373 unique_seq_names = list (np .unique (seq_names ))
7474 for sequence in unique_seq_names :
7575 assert (
76- len ([f for f in all_summary_csvs if sequence in f ]) == nb_operation_points
76+ len ([f for f in all_summary_csvs if sequence in f ])
77+ == nb_operation_points
7778 ), f"Did not find { nb_operation_points } results for { sequence } "
7879
7980 # Only include specified sequences
8081 matched_summary_csvs = []
8182 for seq in seq_list :
82- matched = [f"{ dataset_prefix } { seq } " in summary_csv for summary_csv in all_summary_csvs ]
83+ matched = [
84+ f"{ dataset_prefix } { seq } " in summary_csv for summary_csv in all_summary_csvs
85+ ]
8386 found_at_least_one = False
8487 for idx , match in enumerate (matched ):
8588 if match :
@@ -180,9 +183,7 @@ def generate_csv_classwise_video_map(
180183 [seq_list .extend (sequences ) for sequences in dict_of_classwise_seq .values ()]
181184
182185 opts_metrics = {"AP" : 0 , "AP50" : 1 , "AP75" : 2 , "APS" : 3 , "APM" : 4 , "APL" : 5 }
183- results_df = read_df_rec (
184- result_path , dataset_prefix , seq_list , nb_operation_points
185- )
186+ results_df = read_df_rec (result_path , dataset_prefix , seq_list , nb_operation_points )
186187
187188 # sort
188189 sorterIndex = dict (zip (seq_list , range (len (seq_list ))))
@@ -195,7 +196,6 @@ def generate_csv_classwise_video_map(
195196 output_df .drop (columns = ["fps" , "num_of_coded_frame" ], inplace = True )
196197
197198 for classwise_name , classwise_seqs in dict_of_classwise_seq .items ():
198-
199199 class_wise_maps = []
200200 for q in range (nb_operation_points ):
201201 items = utils .search_items (
@@ -215,7 +215,9 @@ def generate_csv_classwise_video_map(
215215 ), "No evaluation information found in provided result directories..."
216216
217217 if not skip_classwise :
218- summary = compute_overall_mAP (dict_of_classwise_seq [classwise_name ], items )
218+ summary = compute_overall_mAP (
219+ dict_of_classwise_seq [classwise_name ], items
220+ )
219221 maps = summary .values [0 ][opts_metrics [metric ]]
220222 class_wise_maps .append (maps )
221223
@@ -240,9 +242,7 @@ def generate_csv_classwise_video_mota(
240242 seq_list = []
241243 [seq_list .extend (sequences ) for sequences in dict_of_classwise_seq .values ()]
242244
243- results_df = read_df_rec (
244- result_path , dataset_prefix , seq_list , nb_operation_points
245- )
245+ results_df = read_df_rec (result_path , dataset_prefix , seq_list , nb_operation_points )
246246 results_df = results_df .sort_values (by = ["Dataset" , "qp" ], ascending = [True , True ])
247247
248248 # accuracy in % for MPEG template
@@ -253,7 +253,6 @@ def generate_csv_classwise_video_mota(
253253 output_df .drop (columns = ["fps" , "num_of_coded_frame" ], inplace = True )
254254
255255 for classwise_name , classwise_seqs in dict_of_classwise_seq .items ():
256-
257256 class_wise_motas = []
258257 for q in range (nb_operation_points ):
259258 items = utils .search_items (
@@ -290,14 +289,12 @@ def generate_csv_classwise_video_miou(
290289 dataset_path ,
291290 dict_of_classwise_seq ,
292291 nb_operation_points : int = 4 ,
293- dataset_prefix : str = None ,
292+ dataset_prefix : str = None ,
294293):
295294 seq_list = []
296295 [seq_list .extend (sequences ) for sequences in dict_of_classwise_seq .values ()]
297296
298- results_df = read_df_rec (
299- result_path , "" , seq_list , nb_operation_points
300- )
297+ results_df = read_df_rec (result_path , "" , seq_list , nb_operation_points )
301298
302299 # sort
303300 sorterIndex = dict (zip (seq_list , range (len (seq_list ))))
@@ -310,7 +307,6 @@ def generate_csv_classwise_video_miou(
310307 output_df .drop (columns = ["fps" , "num_of_coded_frame" ], inplace = True )
311308
312309 for classwise_name , classwise_seqs in dict_of_classwise_seq .items ():
313-
314310 class_wise_mious = []
315311 # rate_range = [-1] if nb_operation_points == 1 else range(nb_operation_points)
316312 for q in range (nb_operation_points ):
@@ -457,7 +453,12 @@ def generate_csv(result_path, seq_list, nb_operation_points):
457453 class_ab ["CLASS-AB" ].remove ("Cactus_1920x1080_50" )
458454
459455 class_c = {
460- "CLASS-C" : ["BasketballDrill_832x480_50" , "BQMall_832x480_60" , "PartyScene_832x480_50" , "RaceHorses_832x480_30" ]
456+ "CLASS-C" : [
457+ "BasketballDrill_832x480_50" ,
458+ "BQMall_832x480_60" ,
459+ "PartyScene_832x480_50" ,
460+ "RaceHorses_832x480_30" ,
461+ ]
461462 }
462463 class_d = {
463464 "CLASS-D" : [
@@ -558,7 +559,7 @@ def generate_csv(result_path, seq_list, nb_operation_points):
558559 elif args .dataset_name == "HIEVE" :
559560 hieve = {
560561 "HIEVE-1080P" : ["hieve-13" , "hieve-16" ],
561- "HIEVE-720P" : ["hieve-17" , "hieve-18" , "hieve-2" ]
562+ "HIEVE-720P" : ["hieve-17" , "hieve-18" , "hieve-2" ],
562563 }
563564 output_df = generate_csv_classwise_video_mota (
564565 norm_result_path ,
@@ -610,7 +611,7 @@ def generate_csv(result_path, seq_list, nb_operation_points):
610611 "119" ,
611612 "122" ,
612613 "124" ,
613- ]
614+ ],
614615 }
615616
616617 output_df = generate_csv_classwise_video_miou (
0 commit comments